
Optical Microscope Digitalization and Software
Implementation

Leemans Jasper

May 6, 2008

ii

Preface

An engineer’s main purpose is to use his scientific baggage and ultimately turn it into
something useful. In a Master’s thesis both the future engineer’s theoretical knowledge
and his practical side should therefore be present. In my case basic knowledge of physics,
in particular optics, was not only brought up again but also deepened in the field of optical
microscopy. A more hands-on element was added by combining an internship period with
extensive computer programming efforts. If I pass or not is out of my hands now but I can
honestly conclude, and many fellow students will agree on this, that the past few months
have been hectic but rewarding. Not only did we learn new things about ourselves but
foremost about our future profession. Finally I hope you will enjoy reading this thesis as
I tried my very best to write it as fluently as possible.

Of course I needed help once in a while and for this I thank my college promotor Toon
Goedemé, my supervisors at the Visics Lab1 Johan Van Rompay and Bert DeKnuydt and
their colleague Wim Moreau, for their guidance. My family, friends and fellow students
should neither be forgotten for their support throughout my entire academic career.

1VISion for Industry Communications and Services, a research group within the K.U.Leuven.

iv

Abstract in English

The aim of this thesis can be divided into two distinguishable parts.

• Digitalization of an optical microscope.

• A computer programming part.

The first part consist mainly out of refurbishing an old optical microscope, playing
with optics and attaching different cameras for testing purposes. For this reason a general
understanding of optical microscopy was desperately needed. During this study a short
manual for the microscope was drawn up because none was available at the lab nor from
the manufacturer. Since we are trying to acquire high quality photomicrographs proper
illumination becomes a very important factor, especially when reducing dust, scratches
and other unwanted image artifacts. Köhler illumination is the most commonly used
technique and setting it up correctly is essential in obtaining good photomicrographs.

The second part is the development of a platform independent IIDC compatible GUI
application for video capture. Such a program does currently not exist in the wonderful
world of open source and free software. The IIDC standard (or DCAM standard) defines
the behavior of cameras that output uncompressed image data without audio over a IEEE
1394 FireWire bus. Cameras that support the IIDC standard are usually cameras aimed
at industrial or scientific applications such as capturing microscopic images for lab work.
The software is written in C/C++ with Qt for the graphical user interface and libdc1394
for the actual image acquisition. A widget which supports video recording is also added,
using ffmpeg to encode the raw frames.

A short summary is provided in both English and Dutch. It contains the most impor-
tant conclusions and findings for both parts of this thesis but is by no means complete.

vi

Abstract in het Nederlands

Het doel van deze thesis kan opgedeeld worden in twee belangrijke onderdelen.

• Het digitaliseren van een optische microscoop.

• Het programmeren van een software applicatie.

Het eerste deel bestaat voornamelijk uit het opknappen van een oude optische mi-
croscoop, spelen met de interne optica en het opnemen van beelden door middel van
digitale camera’s. Om dit goed te kunnen doen was eerst een grondige studie van de the-
orie achter de optische microscoop op zijn plaats. Tijdens het doornemen van deze theorie
werd een korte handleiding voor de microscoop geschreven. Dit was nodig aangezien er
geen handleiding meer voor handen was in het laboratorium noch bij de fabrikant. Door-
dat ons doel het opnemen is van microscopische beelden van hoge kwaliteit is vooral de
belichtingstechniek een belangrijke factor. Vooral voor het reduceren van stof, krassen
en andere storende elementen is het belangrijk dat de microscoop juist ingesteld staat.
De Köhler belichtingstechniek is de meest frequent gebruikte techniek bij optische micro-
scopen welke, indien juist toegepast, microscopische beelden van goede kwaliteit voort-
brengt.

Het tweede deel van deze thesis omvat het ontwikkelen van een video capture appli-
catie, compatibel met de IIDC standaard, platform onafhankelijk en met een degelijke
grafische user interface. Zo een programma bestaat op dit moment nog niet in de won-
derlijke wereld van open source en free software. De IIDC standaard (ook wel de DCAM
standaard genoemd) legt vast op welke manier camera’s niet-gecomprimeerde beelden
(zonder geluid) doorsturen over een FireWire bus (IEEE 1394). Camera’s die voldoen
aan deze specificaties zijn meestal camera’s gebruikt voor industriële of wetenschappelijke
toepassingen, net zoals onze microscoop toepassing. De software is geschreven in C/C++
in combinatie met Qt voor de GUI en libdc1394 voor de eigenlijke communicatie met
de camera. Buiten het opslaan van stilstaande beelden is ook het opnemen van video
mogelijk gemaakt door het ffmpeg project mee te integreren.

Een korte samenvatting gaat vooraf aan het boek en streeft dus geen volledigheid na.
Een Nederlandse vertaling van deze samenvatting is ook aanwezig.

viii

Summary in English

Light paths

A microscope consists out of various optical elements like lenses and diaphragms. It
is very important to make a distinction between the image forming light path and the
illuminating light path. As you can see in figure 1 a beam of light is used to illuminate
the specimen or sample under the microscope. This beam is not in focus at the level
of the specimen but forms a spread out light cone. This ensures an even distribution of
the light over the entire surface of the specimen resulting in uniform brightness. On the
other hand, the microscope’s objective lens is focussed on the specimen and contributes
the most to the overall magnification of the image. The objective is of course part of the
image forming light path and since the beam of light is clearly not it should now be fairly
understandable that dust and scratches in the illuminating light path are not visible in
the resulting magnified image.

Figure 1: Light paths in optical microscopy (Molecular Expressions c©).

x

Setting up proper Köhler illumination basically means adjusting the lenses in the
illuminating light path to ensure an evenly distributed beam of light and thus no unwanted
artifacts (fig. 2). This adjustment should be done every time a different microscope
objective is used since every objective has a different lens head. The size and magnification
of the lens play an important role here.

Substage Condenser Lens

Microscope Objective Lens

Glass plate with sample

spread out
light beam

F

Working
Distance

Figure 2: Spread out light beam, focal point F and working distance.

As you can see the working distance is the distance where the specimen is into focus
and it is the same as the focal distance f. In general the higher the magnification of the
lens, the smaller the working distance becomes. Another important factor is the angle at
which the focal point lies which is the angular aperture defined as

a = 2 arctan

(
D

2f

)
(1)

With D the diameter of the lens. This factor is a dimensionless number that char-
acterizes the light acceptance ability of the lens. Usually a deviation on this factor is
engraved on the barrel of a microscope objective as the numerical aperture which defines
the immersion medium to be used. In a medium with refraction index α = 1 (e.g. plain
air) the numerical aperture is defined as

NA = α sin
(
a

2

)
(2)

This is all clearly illustrated in figure 3. As you can see in figure 4 a high quality
photomicrograph can be obtained when proper illumination is set up, reducing the need
for post-processing the image which is always a good thing.

xi

Figure 3: Lens factors.

Figure 4: Reducing dust and scratches by means of proper Köhler illumination.

Optical coupling

Another important image artifact we should try to avoid is lens flare. The camera adapter
optically couples the digital FireWire camera to the microscope with additional lenses.
The distance between those lenses, and consequently the height of the camera adapter
mounted on top of the microscope, should be correct to avoid lens flare. Figure 5 shows a
lens flare artifact, figure 6 shows elimination of lens flare by properly adjusting the height
as seen in figure 7.

xii

Figure 5: Lens flare. Figure 6: No lens flare.

Figure 7: Adjusting eight of the camera adapter.

Filters

Different light attenuating filters can be used to improve image quality. Color filters
attenuate certain wavelengths of the spectrum which is useful when a certain color is
overly present in an image. Gray filters attenuate all wavelengths (white light) and are
used when an image is too bright. Using such a gray filter is better than turning down
the light bulb because overdoing this shifts the light more to the red side of the spectrum.
A third type of filters are the heat absorbing ones to prevent damage to the specimen.
An example of a blue filter, which attenuates red and green in the original image (fig. 8),
can be seen in figure 9.

xiii

Figure 8: Image of bloodcells with no
optical filter in the light path.

Figure 9: The same image with a blue
filter in the light path.

Transmitted and reflected light microscopy

In classic optical microscopy light is transmitted through a specimen from underneath,
propagates up the microscope’s tube to the eyepieces or the camera. This method only
works for translucent samples and not for opaque ones like material samples (wood, met-
als, . . .) or integrated circuits. For this reason reflected light microscopy was invented.
A beam of light is send down the microscope’s tube, reflects on the sample and is con-
sequently captured by the microscope objective. Results as in figure 10 are obtained.

Figure 10: Image of an integrated circuit obtained with reflected light microscopy.

Darkfield microscopy

Regular illumination of a specimen, either in transmitted or reflected light microscopy,
is called brightfield microscopy. Other techniques exist, one of which is called darkfield
microscopy. In darkfield microscopy the center of the illuminating rays are blocked and
unlike Köhler illumination the light beam is in fact directed at the specimen (fig. 11).

xiv

Because no light travels directly through the specimen (or is perpendicularly reflected)
the image is generally dark. However because the light scatters, mostly on the edges of
a specimen, it still has the ability to enter the objective and produce an image. This
yields in a high contrast image, even in unstained (colorless) samples (fig. 12). Darkfield
illumination is can be used with both transmitted and reflected light microscopy.

Darkfield light stop

scatterd lightglass plate containing specimen

Figure 11: Principle of darkfield mi-
croscopy.

Figure 12: A comparison between
brightfield and darkfield illumination.

Software

The software we’ve created aims to be a platform independent GUI program for IIDC
compatible video capture. It can acquire single images, sequential images (with a timed
interval) and full motion video. The user has the ability to select all the video resolu-
tions, color modes and framerates his or her camera supports. It should also be fairly
easy for any engineer or scientist to add custom image processing algorithms to our code.
For microscopy a special measurement calibration feature was added to do fairly accu-
rate measurements on the microscopic scale (fig. 13). Calibration is done with a stage
micrometer, a glass plate with predefined engravings in micrometers.

Figure 13: Measurement calibration with a stage micrometer.

xv

GUI programming

C/C++ in combination with the QT toolkit was chosen for this project. Qt is essentially
a cross-platform development framework for the creation of graphical user interfaces but
also has a wide range of non-GUI related features. It is free and open source unless it is
used in commercial applications, in that case a license should be bought. A Qt application
is generally created out of a series of existing widgets or self-defined extensions to these
widgets. Qt has a small drawback in the fact that color images are always internally
presented in an rgb32 (0xffRRGGBB) or argb322 (0xAARRGGBB) format. Since the
cameras do not directly output such format a conversion is always needed from either
YUV4xx, regular rgb or mono. In plain C such a conversion function is basically a pixel
copying function which is a costly operation and thus slow. Another performance problem
in our program arises when drawing frames of high resolution at high framerates to the
screen. This is caused by our choice to use Qt’s internal drawing engine instead of the
native one but this does mean identical results on all platforms. Although the color
transformations and drawing functions consume a lot of CPU cycles our program does
not lose GUI responsiveness nor stability, even on older machines.

Image acquisition

Actual acquisition of the camera frames is done with an open source C library called
libdc1394. It is a pretty low-level library giving us access to all the features described
in the IIDC camera standard. This library is currently available for Linux/OS X so our
program does not yet run on Windows. However in the near future a Windows port of
libdc1394 is planned, making it the best and only choice for cross-platform FireWire video
capture. Another GUI for libdc1394 already exists, called Coriander, however it is GTK+
based (not Qt) and only runs on Linux.

MPEG recording

To encode the raw frames coming from the camera into a compressed video stream we
needed an encoding library. Libavcodec, which is a part of the popular ffmpeg project,
is used. We’ve chosen MPEG1 as compression format because it generally does not
need additional codecs on most systems and is by no means proprietary. Most MPEG
encoders use YUV420 frames as input and so does the one we use. YUV420 frames are
preferred because of their high compressibility resulting from reduced color information
and planar pixel representation. Unfortunately this means another format conversion on
top of the already CPU intensive MPEG encoding algorithm. On slow computers or at
high framerates this can result in dropped frames as our program takes to much time
converting/encoding frames instead of checking for new incoming camera frames.

2If the alpha channel is not ignored.

xvi

Conclusion

We’ve succeeded in acquiring high quality photomicrographs and movies by combining op-
tical microscope theory and extensive programming efforts. We also did not forget about
the usability of our software. However, performance bottlenecks should be addressed in
the future. Especially the color format transformation functions should be optimized and
if possible a faster way to draw sequences of images should be considered. In today’s mul-
ticore world a clean solution would be to move the camera grabbing part of our program
to it’s own separate thread, ensuring less dropped frames.

Samenvatting in het Nederlands

Beeldvorming & belichting

Een microscoop is een ingewikkeld optisch systeem dat bestaat uit verschillende lenzen
en diafragma’s. Het is hier erg belangrijk om een onderscheid te maken tussen twee
verschillende optische paden, het beeldvormende lichtpad en het belichtingspad. Zoals
te zien is in figuur 14 wordt het specimen onder de microscoop belicht met een breed
uitgesmeerde lichtbundel. Hierdoor krijgen we een uniform verdeeld lichtveld over de
gehele zichtbare oppervlakte van het specimen. Dit is het belichtingspad en de lichtbundel
is dus niet in focus op het niveau van het te onderzoeken specimen. Het microscoop
objectief, dat tevens zorgt voor de grootste vergrotingsfactor in het hele optische systeem,
is uiteraard wel scherpgesteld op het specimen en bevindt zich dus in het beeldvormende
pad. Hieruit valt op te maken dat wanneer er kleine storende elementen zoals stof en
krassen zich in het belichtingspad bevinden deze zich niet manifesteren in het uiteindelijk
verkregen beeld.

Figure 14: Verschillende optische paden in microscopie (Molecular Expressions c©).

xviii

Deze techniek noemt men de Köhler belichtingstechniek en het belangrijkste hierbij
is dat de lichtbundel goed is afgesteld tussen 2 lenzen (die in de voet van de microscoop
en die van het objectief: fig. 15). Het spreekt voor zich dat wanneer men van objectief
verandert er een heraanpassing nodig is aangezien elke lens anders is. Enkele belangrijke
eigenschappen van lenzen spelen hierbij een grote rol aangezien deze het licht komende
van het specimen moeten opvangen.

Substage Condenser Lens

Microscope Objective Lens

Glass plate with sample

spread out
light beam

F

Working
Distance

Figure 15: De uitgesmeerde lichtbundel, het focus punt F en de werk afstand.

De werk afstand tussen de lens in de tip van het objectief en het specimen is de afstand
waarbij het object in focus is, ook wel de focus afstand f genoemd. Hoe hoger de ver-
sterkingsfactor van het objectief, hoe kleiner de werk afstand wordt. Ook de openingshoek
waarbij dit gebeurt speelt een rol en wordt gedefinieerd als

a = 2 arctan

(
D

2f

)
(3)

met D de diameter van lens. Deze factor is een dimentieloos getal dat bepaalt in
welke mate de lens in staat is licht op te vangen van het specimen. Afgeleid van deze
openingshoek is de numerieke apertuur welke altijd gegraveerd is op het objectief. De
numerieke apertuur bepaalt meestal het immersie medium dat gebruikt dient te worden
(lucht, water, olie, . . .). In lucht (brekingsindex α = 1) is deze factor gedefinieerd als

NA = α sin
(
a

2

)
(4)

Dit alles is grafisch voorgesteld in figuur 16.

Als de belichtingstechniek juist is toegepast en de optica juist is ingesteld kan men
microscopische beelden verkrijgen van hoge kwaliteit (fig. 1.29). Zo is er minder nood aan
bewerkingen achteraf om een bruikbaar beeld te verkrijgen, wat altijd een goede zaak is.

xix

Figure 16: De openingshoek van de lens e.a. lens factoren.

Figure 17: Reductie van stof en krassen door middel van Köhler belichting.

Optische verbinding camera

Een fenomeen waar we bij het koppelen van de camera met de microscoop rekening mee
moeten houden is het voorkomen van lichtvlekken. Dit gebeurt door ongewenste reflecties
en lichtbreking door het niet goed monteren van de camera adapter. De camera wordt op
de adapter gevezen en dan bovenin de microscoop geplaatst. De hoogte is echter regelbaar
zodat de juiste afstand tussen de lens van de adapter en die van de microscoop gevonden
kan worden. Als deze hoogte juist is afgesteld kan men lichtvlekken zoals in figuur 2.9
vermijden en verkrijgt men een zuiver beeld zoals dat in figuur 19. De afstelling gebeurt
zoals in figuur 2.6.

xx

Figure 18: Lichtvlekken. Figure 19: Geen lichtvlekken.

Figure 20: Aanpassen van de optische koppeling tussen camera en microscoop.

Filters

Er bestaan verschillende filters die gebruikt kunnen worden in microscopie om het beeld
nog verder te verbeteren. Kleurenfilters attenueren bepaalde golflengtes uit het spectrum
wat handig kan zijn als een bepaalde kleur overvloedig aanwezig is in het beeld. In het
geval van overbelichting kunnen grijsfilters gebruikt worden, welke alle golflengtes (wit
licht) even hard attenueren. Deze methode is beter dan het voltage naar de lamp te
verlagen aangezien dit in extremis resulteert in een meer rood gekleurd licht. Een derde
soort zijn de filters die warmte kunnen absorberen wat ervoor zorgt dat het specimen onder
de microscoop niet te snel beschadigd raakt. Een voorbeeld van een blauwe kleurfilter,
welke zowel rood als groen attenueert in het originele beeld (fig. 21), is te zien in figuur 22.

xxi

Figure 21: Beeld van bloedcellen zonder
kleurenfilter.

Figure 22: Hetzelfde als figuur 21 maar
dan met blauwe kleurenfilter.

Klassieke en reflectie microscopie

In klassieke optische microscopie wordt het licht van onderuit door het specimen gestuurd
waarbij de bundel verder propageert naar boven toe, door het objectief e.a. optica tot
aan de oculairen of de camera. Deze methode werkt uiteraard enkel voor specimens
die doorschijnend zijn en dus niet voor bijvoorbeeld materiaalkundige samples zoals hout,
metaal of IC’s. Om zulke samples toch te kunnen bekijken heeft men reflectie microscopie
uitgevonden. Licht wordt langs bovenaf op het specimen gericht en de reflecties worden
vervolgens opgevangen door het objectief, wat resultaten geeft zoals in figuur 23.

Figure 23: Foto van een IC genomen via reflectie microscopie.

Donkerveldmicroscopie

Wanneer een specimen op een normale manier belicht wordt, hetzij in klassieke of in re-
flectie microscopie, spreekt men ook soms van lichtveldmicroscopie. Andere technieken
bestaan ook, één daarvan is donkerveldmicroscopie. In deze belichtingstechniek worden
de centrale stralen van de lichtbundel geblokkeerd door middel van een lichtstop (fig. 24).

xxii

Verder is de lichtbundel ook niet meer uitgesmeerd zoals dit bij de Köhler methode het
geval was. Doordat er dus geen lichtstralen rechtstreeks door het specimen gaan krijgen
we in eerste instantie een donker beeld. Daar er toch enkele lichtstralen schuin op het
specimen invallen krijgen we diffractie, refractie en reflectie fenomenen die zich vooral
manifesteren aan de randen en de uitgesproken silhouetten van een specimen. Dit resul-
teert in een beeld met een hoog contrast, zeker tegenover de donkere achtergrond, zelfs bij
specimens die van zichzelf kleurloos zijn. Donkerveldmicroscopie kan toegepast worden
bij klassieke en reflectie microscopie. Een vergelijkend voorbeeld is te zien in figuur 25.

Darkfield light stop

scatterd lightglass plate containing specimen

Figure 24: Principe van donkerveldmi-
croscopie.

Figure 25: Een vergelijking tussen
lichtveld - en donkerveldmicroscopie.

Software

Zoals eerder vermeld is ons doel het creëren van een platform-onafhankelijke toepassing
voor het vastleggen van beelden komende van IIDC compatibele camera’s. Het resul-
terende programma kan stilstaande beelden opslaan, sequentiële beelden (op het ritme van
een timer) en volwaardige video beelden. De gebruiker kan alle beeldresoluties, kleuren-
modes en beelden per seconden instellen die de geselecteerde camera aankan. Verder zou
het voor elke ingenieur of wetenschapper relatief eenvoudig moeten zijn om onze code uit
te breiden met extra functionaliteit zoals zelfgeschreven algoritmen. Speciaal voor onze
microscoop toepassing hebben we een calibratie functie ingebouwd waarbij de gebruiker
een dradenkruis kan afmeten tegenover een micrometer plaatje onder de microscoop. Zo’n
plaatje heeft graveringen op gekende afstanden, meestal enkele micrometers van elkaar
(fig. 26).

De grafische user interface

We kozen C/C++ in combinatie met Qt voor dit project. Qt is in essentie een cross-
platform framework voor het creëren van grafische gebruikersinterfaces maar het heeft
ook vele andere voordelen. Het is een open source project tenzij men het gebruikt voor
een commerciële applicatie, in dat geval moet een licentie gekocht worden. Een op Qt

xxiii

Figure 26: Calibratie voor metingen op microscopische schaal.

gebaseerde applicatie bestaat over het algemeen uit een verzameling van bestaande widgets
of uitgebreide varianten van bestaande widgets. Een klein probleem doet zich voor bij het
gebruik van de camera beelden in Qt. Intern wordt een kleurenbeeld in Qt voorgesteld
als een matrix van vier niveaus (rgb32 - 0xffRRGGBB of argb32 - 0xAARRGGBB) wat
niet hetzelfde formaat is waarmee de camera beelden uitstuurt. We zullen dus telkens
een conversie moeten doen vanuit YUV4xx, mono of standaard rgb. Wanneer zo een
conversie functie wordt geschreven als een gewone programmatorische lus wordt dit in
essentie een operatie waarbij pixels gekopiëerd worden. Dit is een trage operatie, zeker
voor hoge resoluties. Een tweede performantie probleem doet zich voor bij het tekenen van
de beelden op het scherm. Doordat we de interne Qt engine gebruiken voor het tekenen
verkrijgen we identieke resultaten op alle platformen maar dit is ook iets trager dan de
platform-afhankelijke manier. Dit wordt echter pas een probleem bij hoge resoluties of
veel beelden per seconde. Over het algemeen is dit niet zo’n groot probleem aangezien
de camera’s op hoge resoluties zelf niet veel beelden per seconden uitsturen. Ondanks
het feit dat ons programma redelijk CPU intensief is blijft de grafische user interface toch
heel responsief, zelfs op oudere machines wat niet onbelangrijk is.

Figure 27: Qt logo.

xxiv

Verkrijgen van beelden

De communicatie met de camera en dus het verkrijgen van de beelden doen we via een
open source C bibliotheek genaamd libdc1394. Het is een bibliotheek op een redelijk laag
abstractie niveau maar geeft ons zo een flexibele toegang tot alle mogelijkheden die de
IIDC standaard biedt. De bibliotheek bestaat voorlopig enkel voor Linux/OS X dus ons
programma werkt op dit moment nog niet op Windows. In de nabije toekomst gaat dit
echter veranderen want een Windows versie is gepland wat libdc1394 de beste en tevens
enigste mogelijkheid maakt om aan cross-platform FireWire video capture te doen. Net
zoals ons programma bestaat er reeds een GUI voor libdc1394 genaamd Coriander maar
deze werkt enkel op Linux en is niet gebaseerd op Qt.

Opnemen van video

Om de beelden van de camera om te zetten naar video moeten we deze comprimeren
en hiervoor is dus een encodeer bibliotheek nodig. We kozen hiervoor libavcodec wat
een onderdeel is van het populair open source ffmpeg project (tevens multiplaform). We
encoderen de beelden naar het MPEG1 formaat omdat elk systeem dit zonder problemen
kan afspelen (extra codecs etc.) en dit ook het eenvoudigste te implementeren was. Nu is
het zo dat MPEG encoders meestal als invoer YUV420 beelden eisen dus hier is weer een
conversie nodig en dit bovenop de reeds rekenintensieve mpeg compressie. In sommige
gevallen kan dit leiden tot framedrops (het niet tijdig een nieuw beeld opvragen aan de
camera) wat lastig kan zijn. YUV420 wordt geprefereerd omdat het beter te comprimeren
is doordat de pixels per kleurvlak samenzitten en een deel van de kleur informatie wordt
genegeerd. Er bestaat ook een mogelijkheid om sequentieel opgenomen stilstaande beelden
via ffmpeg om te zetten naar een filmpje, wat vooral bij traag evoluerende processen een
betere oplossing is dan full-motion video.

Conclusie

We zijn erin geslaagd om beelden van de microscoop op te nemen in hoge kwaliteit door
theorie over microscopie te combineren met programmeer vaardigheden. We vergaten ook
de gebruiksvriendelijkheid van onze software niet uit het oog. Er zijn echter nog verbe-
teringen mogelijk, vooral op het gebied van performantie. Om alles vlotter te doen werken
zouden de functies die de kleuren formaat transformaties doen moeten geoptimaliseerd
worden. Indien mogelijk kan een betere manier om de beelden op het scherm te tonen
gezocht worden. Ook kan het gebruik van multithreading in de software verbeteringen
opleveren door bijvoorbeeld een thread volledig te wijden aan de interactie met de camera
zodat het verliezen van frames geminimaliseerd wordt.

Contents

1 Introduction to optical microscopy 1

1.1 Human eye perception . 1

1.2 Principles of magnification . 3

1.3 Image Formation . 5

1.3.1 Aperture, Airy discs and resolution 5

1.3.2 Eyepieces and Camera Adapters . 8

1.3.3 Conjugate planes . 9

1.3.4 Substage Condenser and Diaphragms 11

1.3.5 Depth of Field . 15

1.3.6 Filters . 17

1.4 Microscope objectives . 18

1.4.1 Infinity corrected optics . 18

1.4.2 Spherical Abberation . 19

1.4.3 Chromatic Aberration . 19

1.4.4 Other types of aberrations . 20

1.4.5 Types of objectives . 21

1.4.6 Field Curvature . 22

1.4.7 Example and Color Codes . 22

1.5 Illumination techniques . 23

1.5.1 Köhler illumination . 24

1.5.2 Darkfield illumination . 27

2 Leitz Ergolux: a short manual 31

2.1 Lab Setup . 31

2.1.1 Cameras . 32

2.1.2 Lamp and lamp power source . 32

2.1.3 Camera adapter and mounting the camera 33

2.2 Focussing on a sample . 35

xxvi CONTENTS

2.3 Revolver and objectives . 35

2.4 Filters . 36

2.5 Illumination . 36

3 Image Acquisition 39

3.1 IIDC . 39

3.2 Video Formats . 40

3.3 Image Processing Libraries . 40

3.4 Libdc1394 . 40

3.4.1 Capture setup . 41

3.4.2 Ring buffer . 42

3.4.3 Cleaning up . 44

3.4.4 libdc1394 2.0.1 functions . 44

4 Software 49

4.1 About Qt . 49

4.2 Application outline . 50

4.3 Loading an image . 50

4.4 Signals between Widgets . 53

4.5 Classes . 54

4.5.1 SelectDialog . 54

4.5.2 CaptureDialog . 55

4.5.3 FeatureDialog . 58

4.5.4 MultigrabDialog . 61

4.5.5 RecordDialog . 63

4.5.6 ReticlesDialog . 67

4.5.7 OptionsDialog . 71

4.5.8 Monitor . 73

5 Conclusion 83

Bibliography 85

A IIDC Video Formats & Modes 87

B Philips 7023 Datasheet 89

C Conversion functions to (A)RGB32 95

List of Figures

1.1 The electromagnetic spectrum. 1

1.2 Intersection of the human eye. 2

1.3 The retina in detail. 2

1.4 Optical vs. visual axis. 2

1.5 Distribution of receptor cells on the retina. 3

1.6 Relationship between object distance and visual angle on the retina. 3

1.7 Focal length between the eye’s lens and the convex lens. 4

1.8 Working principle of a magnifying glass. 5

1.9 Layout of a basic compound microscope. 5

1.10 Diffraction occurrence. 6

1.11 Airy disc diffraction pattern visualizing the resolving power. 6

1.12 Angular aperture, working distance and lens curvature. 6

1.13 Angular aperture and the size of the lens. 6

1.14 Refraction in different transfer mediums. 7

1.15 Two main eyepiece designs. 8

1.16 Different kinds of reticles for measurement. 9

1.17 Stage micrometer. 9

1.18 Photo eyepieces also known as projection lenses. 10

1.19 A camera adapter to be mounted on top of the microscope. 10

1.20 Camera mounted on top with an adapter. 10

1.21 Camera coupled to the eyepieces, a simple solution. 10

1.22 Conjugate focal planes in an optical microscope. 11

1.23 Two main substage condenser designs . 12

1.24 Resulting light cones of the different designs. 12

1.25 The substage condenser influences the numerical aperture of the system. . 12

1.26 Proper adjustment of the substage condenser for Köhler illumination. . . . 13

1.27 Field diaphragm in the base of a Leitz Ergolux microscope. 13

1.28 The Leitz Ergolux’ substage condenser in detail. 13

xxviii LIST OF FIGURES

1.29 Reducing occurrences of dust and scratches with Köler illumination. 14

1.30 With the top swing-lens, illumination path not in focus with the specimen. 14

1.31 Without the top swing-lens, artifacts visible and readjustment needed. . . . 14

1.32 Swing-lens condenser for high and low magnifications. 14

1.33 Depth of field in classic photography. 15

1.34 Cells completely out of focus. 15

1.35 top of the cells into focus. 15

1.36 Center of the blood cells in focus. 16

1.37 Bottom of the cells in focus. 16

1.38 Cells again completely out of focus. 16

1.39 Bloodcells in Köhler illumination without a color filter. 17

1.40 Bloodcells in Köhler illumination with a blue color filter. 18

1.41 Magnification with infinity corrected lenses. 19

1.42 Spherical abberation in uncorrected lenses. 19

1.43 A perfectly spherical corrected lens. 19

1.44 Chromatic aberration in uncorrected lenses and possible solutions. 20

1.45 Types of geometrical distortions. 20

1.46 Three commonly known types of optical microscope objectives. 21

1.47 Field curvature as a result of the curved surface of a lens. 22

1.48 Engraved objective specifications. 22

1.49 List of color codes. 23

1.50 Comparison of different light sources. 23

1.51 Reflected light optical pathway. 24

1.52 Modern microscope with both transmitted and reflected light capabilities. . 24

1.53 Light paths in Köhler illumination. 25

1.54 Screws to center the light source of a Leitz Ergolux microscope. 26

1.55 Changing the field diaphragm in reflected light microscopy. 26

1.56 Adjusting the brightness in reflected light microscopy 27

1.57 Principle of the darkfield illumination technique. 27

1.58 Reflected light darkfield illumination setup. 28

1.59 Mirror block for reflected light darkfield microscopy. 28

1.60 Blood cells in normal brightfield reflected light. 28

1.61 The same blood cells under darkfield reflected light. 28

1.62 CMOS image sensor under normal brightfield reflected light. 29

1.63 CMOS sensor under darkfield illumination. 29

LIST OF FIGURES xxix

2.1 Overview of the lab setup. 31

2.2 AVT Marlin. 32

2.3 AVT Dolphin. 32

2.4 Philips microscope lamp. 32

2.5 Leitz external 12V lamp source. 33

2.6 Ergolux camera adapter. 33

2.7 Photopieces to be fitted inside the camera adapter. 34

2.8 Properly mounting the camera and the adapter. 34

2.9 Removing lens flare by adjusting the adapter height. 34

2.10 Focus turning knobs on the Ergolux. 35

2.11 The revolver’s turning button. 36

2.12 The revolver with 5 objectives mounted. 36

2.13 Light attenuating filters. 36

2.14 The field diaphragm with a yellow color filter fitted. 37

2.15 The Ergolux’ reflected light block with filter slots. 37

2.16 Ergolux substage condenser. 37

2.17 Mirror block slides in for darkfield illumination. 37

3.1 Ring buffer structure containing the frames. 43

3.2 Ring buffer structure in memory. 43

3.3 The first, third and sixth frame. 43

4.1 Linux version (left) and OS X version (right). 50

4.2 Pentium III benchmark results. 52

4.3 Core Duo benchmark results. 52

4.4 Schematic presentation of signals between our different Qt widgets. 54

4.5 The camera selection dialog. 55

4.6 The capture settings dialog. 56

4.7 Setting the Format 7 options. 57

4.8 Resulting ROI camera stream. 57

4.9 Format 7 ROI within the image size constraint. 58

4.10 The features settings dialog. 58

4.11 Grab images with regular intervals with the MultigrabDialog. 62

4.12 Record an MPEG video with the RecordDialog class. 63

4.13 Graphical presentation of a YUV420 planar frame. 64

4.14 The ReticlesDialog class. 67

4.15 Reticle types and colors. 68

xxx LIST OF FIGURES

4.16 Calibrating the micrometer reticle. 68

4.17 Calibrating the grid reticle, lines 10µm apart. 68

4.18 Estimate the size of human bloodcells. 68

4.19 Drawing region for the reticles within the window viewfield. 69

4.20 The OptionDialog class provides general program options. 72

4.21 Duo Core CPU load with frame limiter disabled. 72

4.22 Duo Core CPU load with frame limiter enabled. 72

4.23 The file dialog on Mac os X. 81

4.24 The file dialog on Linux. 81

Chapter 1

Introduction to optical microscopy

The first chapter of this book enlightens the reader about the basics of optical microscopy,
ranging from the interaction with the human eye to more advanced subjects like types of
illumination, digital photomicrography, color filters, etc. Our goal here is to gain some
basic knowledge of microscopic principles that are mentioned in other parts of this book
and therefore this chapter is more like a summary. If you are interested in learning more
about these subjects Michael W. Davidson [1] and Mortimer Abramowitz [2] have some
great books online in cooperation with microscope manufacturer Olympus. Michael W.
Davidson also maintains the Molecular Expressions website at Florida State University
[3]. Nikon Inc., another well known microscope manufacturer, also has a fine website [4]
in cooperation with Molecular Expressions.

1.1 Human eye perception

We remember from basic physics or biology that the human eye can perceive wavelengths
between roughly 400 and 750 nm in the electromagnetic spectrum (fig. 1.1). These wave-
lengths represent the colors violet and red respectively and any color in between. Therefore
the microscope must emit light in this visible region or make wavelengths outside this re-
gion visible with techniques like fluorescence microscopy. Furthermore the eye can also
sense differences in brightness ranging from black to white and all grays in between.

Figure 1.1: The electromagnetic spectrum (Molecular Expressions c©).

2 Introduction to optical microscopy

The part of the eye responsible for detecting color and various levels of brightness is
the retina (fig. 1.2 and fig. 1.3). The retina (opposite to the lens) is composed out of rod
cells that sense brightness and cone cells which are sensitive to colors. The cones can be
divided into three types where about 64% of the cones are red-sensitive, 32% are green
sensitive and 2% are blue sensitive. Their relative numbers really don’t say much as the
cones have different grades of sensitivity to bring the colors back into proportion. The
blue cones are the most sensitive and this partially makes up for their disadvantage in
numbers, still yellow is the color we see the best [6]. A good website about this subject
is the one from Georgia State University [5].

Figure 1.2: Intersection of the human
eye (Molecular Expressions c©).

Figure 1.3: The retina in detail (Molec-
ular Expressions c©).

Now why is this important to us? First lets have a look at the distribution of rods and
cones on the retina. At the center of the retina, a couple of degrees of the optical axis,
we find the central fovea (fig. 1.4). Also known as “the yellow spot” the central fovea is
the area of sharpest vision and lies on the visual axis (0◦ in figure 1.5). This is because
it has the highest density of rods and cones on the entire retina, resulting in a maximum
resolution of space (spatial resolution1 [8]), contrast, and color. Outside the center of the
fovea cone density decreases very steep. Rods peak at the periphery of the fovea and
decrease gradually with the angle.

Figure 1.4: Optical vs. visual axis (Adobe c©[6]).

1Spatial resolution is a measure of how closely lines can be distinguished in an image, generally
expressed as line pairs per millimeter [lp/mm].

1.2 Principles of magnification 3

Figure 1.5: Distribution of receptor cells on the retina (Molecular Expressions c©).

The distance between an object and the eye influences the angle at which the bundle
of reflected light coming from the object is “spread” onto the retina. Due to the lens of
the eye the angle is opposite proportional to the distance. Hence an object too close to
the eye will lose it’s detail as a bigger part of the reflected light that enters the eye is
captured by the less populated part of the retina. This is illustrated in figure 1.6. The
eye’s lens can compensate for this effect by changing it’s shape, but only to a limited
degree. How microscopes solve this problem is explained in the next part of this chapter.

Figure 1.6: Relationship between object distance and visual angle on the retina, (a) object
is far away and (b) object is close (Molecular Expressions c©).

1.2 Principles of magnification

As the conventional viewing distance of the human eye is limited by the effect described
above, a solution for viewing small objects up close is needed. Let us first have a look
at how a simple magnifying glass works (fig. 1.8). By placing a convex lens2 between the
eye and the object the reflected light coming from the object falls onto the retina at a

2A convex lens is a lens which is spherical at both sides or in other words thicker in the center than
at the periphery.

4 Introduction to optical microscopy

sufficiently small angle. This does not only mean preservation of detail but it also means
the brain is being “fooled” in thinking that the object is actually larger and farther away
then it really is. To get this virtual image into focus the lens has to be positioned correctly
between the eye and the object, centered and at the right focal distance f (fig. 1.7).

Figure 1.7: Focal length between the eye’s lens and the convex lens.

Now combining the principle of a magnification glass with more lenses (for higher
magnification) and a light source, we can construct a simple compound microscope. In
figure 1.9 a basic version of such a microscope is shown. There’s lots of different ways
manufacturers constructed microscopes in the past and therefore variations of this layout
exist. We can however divide the optical pathway into four important parts out of which
every modern optical microscope is composed of. Generally a two stage magnification is
used by combining the magnification of the objective with the one from the eyepiece3. The
objective, which sits very close to the specimen, allows for very high magnification. It’s
magnification can range from 2X to +100X but depends on the used immersion medium.
For the highest magnifications water or oil immersion is used but for lower values air
is sufficient. More on this, including a summary of different types of objectives, can be
found in section 1.4. The next step in magnification is the eyepiece which usually has a
magnification lower or equal to 10X. Combining a 100X high magnification objective with
a 10X eyepiece results in a maximum magnification of 1000X. Modern optical microscopes
can magnify up 1500X, for higher magnifications an electron microscope is used instead.
A third important part of the optical pathway is the microscopes body tube which connects
the beam coming from the objective to the eyepiece(s) by the use of prisms and/or mirrors.
Finally the condenser shines the light onto the specimen. The person looking trough the
microscope isn’t actually looking at the specimen itself but rather at an image of the
specimen that is being projected inside the eyepieces, right in front of the eye. However,
it’s safe to say that the image will be an accurate representation of the specimen when
the equipment is used correctly. Next we will discuss these parts in more detail.

3An eyepiece is also sometimes referred to as an ocular, we will use the former designation in this
book.

1.3 Image Formation 5

Figure 1.8: Working principle of a
magnifying glass (Molecular Expressions
c©).

Figure 1.9: Layout of a basic compound
microscope (Molecular Expressions c©).

1.3 Image Formation

After reviewing the basic principles of magnification we can now investigate other aspects
in microscopic image formation. We will only introduce those properties that are needed
to properly use and understand the equipment. The theoretical background will help
us understand how image properties (contrast, detail, brightness,. . .) can be altered by
different components of the microscope. Correctly using all of the microscope’s features
is essential, especially when trying to take photomicrographs of high quality (which is the
aim of this thesis).

1.3.1 Aperture, Airy discs and resolution

When light passes through small spaces of a specimen or is reflected by it (see: section 1.5)
and enters the microscope objective it scatters, yielding a diffraction pattern known as
airy discs (fig. 1.10). This means that the resulting image at the end of the optical light
path4 is not constructed out of perfect points but rather out of a series of airy discs.
Airy discs are points surrounded by concentric circles of different intensities. The smaller
the angular aperture (see next paragraph), the bigger the working distance but the more
closely the discs cling together having a negative impact on image quality. The ability
to distinguish separate details in the image is called the resolving power and depends on
whether or not these airy disc overlap (fig. 1.11). The resolving power can be enhanced
by increasing the light-catching ability of an objective by enlarging it’s angular aperture.
For this reason objectives with large magnification factors (a high resolving power) are
always meant to be used with specialized mediums because they have such high angular
and numerical apertures.

4The eye of an observer, photographic film or a digital camera

6 Introduction to optical microscopy

Figure 1.10: Diffraction occurrence
when light passes through a specimen
and enters the small opening of the ob-
jective.

Figure 1.11: Airy disc diffraction pat-
tern visualizing the resolving power
(Molecular Expressions c©).

As the light coming from the specimen is scattered around in all directions the resolving
power of the lens is directly subject to the amount of light it can capture. The angle at
which the lens should captures the light is called the angular aperture and lies at the
distance where the lens yields a sharp image of the specimen. The angular aperture
depends on the convex of the lens and it’s size. If we increase the curvature of the lens we
simultaneously increase the angular aperture but we also decrease the working distance5

(fig. 1.12). The reason for this is a change in focal distance which depends on the convex
of the lens. Furthermore, if we make the lens bigger it can catch more scattered light and
this automatically makes for a higher angular aperture (fig. 1.13).

Figure 1.12: Angular aperture, working
distance and lens curvature (Molecular
Expressions c©).

Figure 1.13: Angular aperture and the
size of the lens (Molecular Expressions
c©).

5The working distance being the distance from the objective front lens to the specimen surface.

1.3 Image Formation 7

Now we can determine the numerical aperture (N.A.) of a microscope objective which
is expressed by the following formula:

NA = n sinµ (1.1)

where n is the refraction index of the material between the specimen’s cover glass and
the lens and µ is half the angular aperture α of the first lens. The numerical aperture is
always engraved onto the objective as it is relevant to what immersion medium should be
used.

Let’s look at two examples. Suppose we use an objective to be used with plain air
as immersion medium (a “dry” objective) and a thin cover glass is used to protect the
specimen, then we have a refraction index close to 1 (n = 1 for vacuum). With α’s
theoretical limit at 180 ◦, µ can never exceed 90 ◦ and sinµ = 1. This means the theoretical
N.A. of a objective used in air is limited to 1. Of course α can never be 180 ◦ and air
is not vacuum so generally it’s less than 1. When using a specialized immersion oil as
transfer medium with a refraction index of n = 1.515 a theoretical limit of N.A. = 1.5 can
be obtained. Notice in figure 1.14 refraction when using immersion oil is negligible due to
the fact that n = 1.5 for glass and therefore no noticeable transition is present between
the two mediums.

Figure 1.14: Refraction in different transfer mediums, (a) using air and (b) using a spe-
cialized immersion oil (Molecular Expressions c©).

Now that we’ve studied the numerical aperture of a lens we can link this to the
previously discussed property resolving power. This ability to distinguish separate details
in the image can be expressed by resolution. Resolution is defined as the actual distance
between two distinguishable points and can be expressed as

r =
λ

2NA
(1.2)

for non-luminous objects (Abbe) and for self-luminous objects (Raleigh) as

r =
1.22λ

2NA
. (1.3)

These two formulas are easy to comprehend. A higher N.A. means a smaller resolvable
distance r, a shorter wavelength λ also means a smaller r. Hence, a smaller r means
a better resolution and thus strongly depends on the light used and the N.A. of the
objective.

8 Introduction to optical microscopy

As we will see later in this chapter the total magnification of a microscope objective is
rather complicated and uses many lenses. However the useful magnification is limited due
to the diffraction problem discussed above. In general the limit is 1000X the numerical
aperture of the objective as higher magnification will not yield more detail (e.g. for N.A.
= 0.25 a good magnification of 250X can be obtained). Therefore high magnification
objectives usually use a high angular aperture lens. In general, the objective working dis-
tance decreases as the magnification and numerical aperture both increase. It is however
good practice to combine eyepieces to further magnify the image as otherwise the work-
ing distance and size of the lens would be too excessive. Modern microscopes can obtain
a total magnification of 1500X (objective x eyepiece(s)) with a theoretical resolution of
around 0.2 micrometers (diffraction limit).

1.3.2 Eyepieces and Camera Adapters

Eyepieces are used to further magnify the image coming from the objective and to make
it visible to the human eye. Eyepieces are sometimes called oculars and different optical
designs exist. They can generally be divided into two main categories, the negative and
positive eyepieces. Negative eyepieces are the most uncomplicated and are also called
Huygenian eyepieces. When an eyepiece only has it’s magnification inscribed on the
housing it’s most likely an Huygenian eyepiece. In their simplest form they are not
corrected for optical aberrations and are intended to be used with the cheaper achromat
objectives (see: 1.4). The other main eyepiece design is the Ramsden design, also known
as positive eyepieces (fig. 1.15).

Figure 1.15: Two main eyepiece designs, negative (Huygenian) and positive (Ramsden)
(Molecular Expressions c©).

Both basic Huygenian and Ramsden eyepieces have two lenses and a built-in di-
aphragm but variations on these designs exist when more lenses are added for extra
optical correction. Examples of optically corrected eyepieces are the Plan or the even
better Periplan designs. Just like plan objectives they are designed to enhance the size
and flatness of the viewfield. In Huygenian eyepieces the curved side of the field lens is
pointed downwards and the diaphragm sits in the middle. For the Ramsden design the
diaphragm sits at the bottom and the curved side of the field lens is pointed upwards.

1.3 Image Formation 9

For measurements on the microscopic scale reticles can be mounted on top of the
eyepieces (fig. 1.16). In order to measure correctly you will need a reference, generally a
stage micrometer. A stage micrometer is a microscope slide with lines engraved at very
small but accurate distances (fig. 1.17). It might be a good idea to implement reticles
in our imaging software simply as an overlay on the digitalized photomicrograph (for
applications were measurement is important).

Figure 1.16: Different kinds of reticles
for measurement (Molecular Expressions
c©).

Figure 1.17: Stage micrometer that
came with a Leitz Ergolux microscope,
engravings respectively 10 and 100 µm
apart.

A specialized form of eyepieces are the photo eyepieces, also called projection lenses
(fig. 1.18). Since they are used to project an image onto a CMOS sensor, CCD or plain
photographic film they must produce perfectly flat-field images. They can also be chro-
matically corrected for color microphotography but this will only give good results when
they are combined with a color corrected objective. Just like normal eyepieces they also
have a magnification factor but do not yield an image that is clearly visible to the human
eye. They are used together with a camera adapter (fig. 1.19) to mount the camera on
top of the microscope (fig. 1.20). It is also possible to couple a camera to an eyepiece
using special adapters but since the eyepieces are designed for the human eye this does
not produce optimal results (fig. 1.21). Therefore this is only done when no base to mount
the camera adapter is present on top of the microscope.

1.3.3 Conjugate planes

In order to understand the workings of the condenser in the next section and to compre-
hend Köhler illumination (see: section 1.5.1) later on we will now take a short look at
conjugate planes in the optical microscope. Conjugate planes are a set of focal planes in
an optical system that are simultaneously in focus (fig. 1.22). We can theoretically define
two optical paths in a microscope, the illumination path and the image-forming path. For
example the specimen plane is in focus at the image-forming path, this is logical because
you want the image of the specimen to be in focus. The light used to illuminate the
specimen may not be in focus at this plane as this will introduce image artifacts ascribed
to dust and scratches in the illumination path. Being that the illuminating rays are not
in focus in the same plane as the specimen results in a evenly distributed beam of light
yielding proper illumination over the entire viewfield of the specimen. All this will become
clearer as we will look at some examples in the next section.

10 Introduction to optical microscopy

Figure 1.18: Photo eyepieces also known
as projection lenses (Molecular Expres-
sions c©).

Figure 1.19: A camera adapter to
be mounted on top of the microscope
(Molecular Expressions c©).

Figure 1.20: Camera mounted on top
with an adapter (incl. the projection
lens) (Molecular Expressions c©).

Figure 1.21: Camera coupled to the eye-
pieces, a simple solution (Molecular Ex-
pressions c©).

1.3 Image Formation 11

Figure 1.22: Conjugate focal planes in an optical microscope (Olympus c©).

1.3.4 Substage Condenser and Diaphragms

Correctly working with the substage condenser (especially in transmitted light) is essen-
tial for obtaining good photomicrographs. The substage condenser gathers light from the
microscope’s light source and concentrates it into a cone of light that illuminates the spec-
imen with uniform intensity over the entire viewfield. Two main designs exist (fig. 1.23).
The least corrected substage condenser is the Abbe condenser. More expensive is the
Aplanatic-Achromatic condenser well corrected for chromatic and spherical aberration.
As we’ve seen in the theory about numerical aperture different objectives require different
light cone setups because of their distinctive light-catching abilities. The design of the
substage condenser can also play a part in this as seen in figure 1.24.

Every time the microscope objective is changed some adjustments to the condenser
will have to be made. This is because the condenser directly influences the numerical
aperture of the system (see: section 1.3.1). For full usage of the objective the N.A. of the
condenser should match that of the objective. This can be shown when looking at the
formula for the total N.A of the system

NAsystem =
NAobjective +NAcondenser

2
. (1.4)

12 Introduction to optical microscopy

Figure 1.23: Two main substage con-
denser designs (Molecular Expressions
c©).

Figure 1.24: Resulting light cones of the
different designs (Molecular Expressions
c©).

The useful N.A. of the system is however limited to the N.A. of the objective so there is
no use in making the NAcondenser bigger than NAobjective. Generally the higher the N.A. of
the objective the wider the light cone. The numerical aperture of the substage condenser
can be altered by opening and closing the aperture diaphragm located at the base of the
condenser (fig. 1.25). Note that in figure 1.25 the image-forming light path is shown and
not the illumination light path

Figure 1.25: The substage condenser influences the numerical aperture of the system
(Molecular Expressions c©).

Let’s go over the steps to obtain a decent photomicrograph using the Köhler illumi-
nation technique6 with the Leitz Ergolux microscope we use at the lab.

- Fine focus the microscope on the specimen.

- Close the field diaphragm in the base of the microscope completely until it is visible,
most likely as a blurry circle (fig. 1.26(a)).

- By adjusting the height of the condenser you can fine-focus this silhouette (y-
direction) (b).

6Another small tutorial is found on: http://microscopy.berkeley.edu/courses/TLM/condenser/kohler.html.

http://microscopy.berkeley.edu/courses/TLM/condenser/kohler.html

1.3 Image Formation 13

- With the two screws (or knobs) you can center it (x/z-direction) (c).

- Open the field diaphragm (fig. 1.27) just enough so that its edges are just beyond
the field of view (d).

- Finally you can adjust the aperture diaphragm in the condenser (fig. 1.28) to alter
contrast.

Figure 1.26: Proper adjustment of the substage condenser for Köhler illumination.

Figure 1.27: Field diaphragm in the base
of a Leitz Ergolux microscope.

Figure 1.28: The Leitz Ergolux’ sub-
stage condenser in detail.

Bringing the field diaphragm’s silhouette into fine-focus has an apparent reason. In
figure 1.22 you can see that both the field diaphragm and the specimen belong to the
image-forming path. This is the working principle of Köler illumination (see: 1.5.1). It
results in a light beam that’s not in focus at the same plane as the specimen, clearly
reducing artifacts attributed to dust and scratches in the light path. This can be seen in
the following set of images (fig. 1.29). When a swing-lens is used as the top lens of the
condenser, removing it will yield a change in the light’s focal plane and readjustment will
be needed (fig. 1.30 and fig. 1.31).

Top lenses that can swing out are used for objectives with low magnification (5X or
lower) since Koḧler illumination does not apply at such low magnifications (see: 1.5.1).
Therefore some substage condensers are equipped with such a swing lens to remove the
top lens from the optical pathway (fig. 1.32). In this case the aperture diaphragm no
longer controls the numerical aperture and should be set to it’s maximum. Instead the
field diaphragm will be used to control the illuminating rays and is therefore responsible
for brightness and contrast.

14 Introduction to optical microscopy

Figure 1.29: Reducing occurrences of dust and scratches with Köler illumination.

Figure 1.30: With the top swing-lens,
illumination path not in focus with the
specimen.

Figure 1.31: Without the top swing-
lens, artifacts visible and readjustment
needed.

Figure 1.32: Swing-lens condenser for high and low magnifications (Molecular Expressions
c©).

1.3 Image Formation 15

1.3.5 Depth of Field

Just like in classic photography we can define a depth of field for optical microscopes.
The depth of field is defined as the distance in where a certain object remains in focus
(fig. 1.33). Generally the higher the magnification of the objective, the smaller the depth
of field will be. Because this depth of field is very small in microscopy we have trouble
getting the entire specimen into focus when working with high magnifications.

Figure 1.33: Depth of field in classic photography.

In microscopy, especially transmitted light microscopy, a lot of specimens are translu-
cent. This allows us to focus onto different depths of the specimen as if it were slices.
It’s up to the researcher/scientist/engineer to make the right decision for the depth of
field and this decision depends on what part of the specimen he or she is interested in.
Let’s look at an example of red blood cells. All images are taken with a 50x/0.85 NPL
Leitz Fluotar ∞/0 dry objective in combination with an 8X Periplan photo eyepiece and
coupled to an AVT industry-grade FireWire camera. Furthermore a blue color filter was
used to enhance image quality and contrast (see: 1.3.6).

Figure 1.34: Cells completely out of fo-
cus.

Figure 1.35: top of the cells into focus.

16 Introduction to optical microscopy

Figure 1.36: Center of the blood cells in focus, their defining donut shape can now be
clearly distinguished.

Figure 1.37: Bottom of the cells in fo-
cus, you can now see the silhouette of
the cells clearly and how they are con-
nected to their neighboring cells.

Figure 1.38: Cells again completely out
of focus.

1.3 Image Formation 17

1.3.6 Filters

Photomicrography is susceptible to unexpected color shifts attributed to a wide range of
complicated causes ranging from chromatic aberration (see: 1.4.3) to light source voltage
fluctuations. Manufacturers therefore provide a whole range of different filters for exam-
ple color compensation filters, neutral density filters, heat-absorbing filters, etc. Color
compensation filters attenuate a certain color in the spectrum which can be used to filter
a color that’s excessively present or to enhance contrast. Neutral density filters are used
in situations where the illumination appears to bright for comfortable observation. These
gray filters reduce transmitted light evenly over all wavelengths. A special type of filter
is the heat-absorbing filter. As 90% of radiation emitted by a tungsten light source is in
the infrared region this manifests itself as heat which can damage the specimen. Heat-
absorbing filters can therefore be placed in the light path, generally close to the light
source. Now let’s look at a color compensating filter example.

Figure 1.39: Bloodcells in Köhler illumination without a color filter.

Without any color filter applied it’s obvious that red and green present a far larger
portion of the pixels in the image than blue. You can see this clearly in the color his-
tograms (fig. 1.39). To balance this out we can use a blue filter which will attenuate red
and green but will pass (or even slightly amplify) the blue part of the spectrum. This will
result in an even distribution of red, green and blue pixels an thus resulting in a good
photomicrograph with proper brightness and good contrast (fig. 1.40).

18 Introduction to optical microscopy

Figure 1.40: Bloodcells in Köhler illumination with a blue color filter.

1.4 Microscope objectives

Microscope objectives are the most important part of the optical microscope as they
are responsible for the first magnification step, which is the biggest one. They are very
complex to construct and therefore quite expensive. Many different types of objectives
exist and in this chapter we will cover their basic properties. Naming conventions for
microscope objectives are based on their ability to correct certain optical abberations so
we will also discuss the origins of such anomalies.

1.4.1 Infinity corrected optics

Every lens has a fixed point of focus but in order to transfer the light from the objective to
the eyepieces a long way has to be covered7. A finite focal distance is therefore a problem
and is solved by the use of infinity corrected optics (fig. 1.41). An infinity corrected lens
projects an image that is collimated to infinity8, and the image is brought into focus
somewhere else (e.g. in the eyepieces or the camera lens). Most modern microscopes use
infinity corrected objectives and can be identified as they are marked with an infinity
symbol ∞.

7Usually between 160mm and 250mm depending manufacturer.
8In other words, perfectly parallel beams of light.

1.4 Microscope objectives 19

Figure 1.41: Magnification with infinity corrected lenses (Molecular Expressions c©).

The total amount of magnification of an infinity corrected optical system can easily be
calculated with the following formula: Mo = Ft

Fo
. Where Fo is the objective’s focal length,

Ft is the focal length of another lens used to bring the image back into focus and Mo is
the system’s total amount of magnification.

1.4.2 Spherical Abberation

When light of one frequency (monochromatic light) passes through the center of a lens it is
not refracted. However, the more we deviate from the center the more the rays will bent,
yielding in different focal planes (fig. 1.42). This anomaly is called spherical abberation
and gets even worse when using light that contains different frequencies9 (see: 1.4.3). As
the lens catches rays from all the illuminated points of a specimen this effect will have to
be compensated if we want a clear image. Lens manufacturers will take this into account
when designing microscope objectives and make the necessary corrections (fig. 1.43).

Figure 1.42: Spherical abberation in un-
corrected lenses.

Figure 1.43: A perfectly spherical cor-
rected lens.

1.4.3 Chromatic Aberration

Due to the different wavelengths of colors another anomaly occurs where each color fre-
quency has a different focal plane. This effect is called chromatic aberration. It is caused
by an effect called dispersion. Dispersion occurs when light passing from air into the glass
lens is slowed down, each color at a different rate as a result of their wavelength. As
the light then exits the lens back into air refraction occurs10 and not all colors bend the
same way (fig. 1.47). The result of chromatic aberration are overall soft images if the

9For example white light which contains all colors.
10As seen in spherical abberation, due to the shape of the lens.

20 Introduction to optical microscopy

different focus planes are close together or complete lack of a certain color if the planes lie
far apart. Again objective manufacturers will correct the lenses to bring the main colors
(RGB) to a common focus.

Figure 1.44: Chromatic aberration in uncorrected lenses and possible solutions.

1.4.4 Other types of aberrations

Other types of optical aberrations can occur in optical microscopy. For example coma
and astigmatism are aberrations ascribed to misalignment of the substage condenser.
Misalignment of the condenser can also attribute to the presence of lens flare. Because
these kinds of image anomalies are not related to the objectives but rather to incor-
rect usage of the equipment we will not discuss them any further. When our short
tutorial on Köhler illumination is correctly carried out (see: 1.3.4) these aberrations
will not manifest themselves. If you want to learn more about these aberrations visit
http://micro.magnet.fsu.edu/primer/lightandcolor/opticalaberrations.html.

The last optical aberration is geometrical distortion which is not that common as
microscope manufacturers try to avoid it during their design phase. It is hard to detect
but is most severe when the examined object under the microscope contains straight lines.
We define two kinds of geometrical distortion namely pincushion and barrel (fig. 1.45).
More information about this distortion can also be found on the web site mentioned above.

Figure 1.45: Types of geometrical distortions (Molecular Expressions c©).

http://micro.magnet.fsu.edu/primer/lightandcolor/opticalaberrations.html

1.4 Microscope objectives 21

1.4.5 Types of objectives

All of the major microscope manufacturers prove three important types of objectives
(fig. 1.46). The least expensive type being the achromatic objectives. They are corrected
for chromatic abberations as colors blue and red share the same focal plane. This means
green is not in focus at the same focal length as red and blue which makes achromatic
objectives not suitable for color photomicrography. They are however corrected for spher-
ical aberration at the green wavelength. A green filter can be used when focussed in
the red-blue region to get rid of typical green halos resulting from the difference in focal
length. Objectives not specifically labeled are achromats.

Next we have the fluorite objectives11. They are also chromatically corrected for red
and blue but usually closer to the green focus plane. Hence they are quite suitable for
color photomicrography. Furthermore they are spherically corrected for two wavelengths,
blue and green and therefore more expensive. They are constructed from advanced glass
formations containing fluorite and this is how they got their name.

The third and most expensive objectives are the apochromats. Red, green and blue are
brought into focus in the same plane thus apochromats are the best objectives for color
photomicrography. Sometimes even a fourth color (deep blue) is added and they are also
spherically corrected for up to four colors. Their higher price tag generally also results in
a higher numerical aperture12 and therefore providing brighter images with more contrast.

Figure 1.46: Three commonly known types of optical microscope objectives, (a) achrot-
mats (b) fluorites and (c) aphochromats (Molecular Expressions c©).

11Sometimes also called semi-apochromats.
12The N.A. indicates the light acceptance angle and therefore the resolving power, see: 1.3.1

22 Introduction to optical microscopy

1.4.6 Field Curvature

Due to the fact that curved lenses are used, the flat virtual image of the specimen will
become curved as well after it passes through a series of lenses. The resulting image will
therefore not be sharp in the entire field of view but only at the center or the edges. In
other words, the obtained image will have a similar spherical shape as the lenses. This
aberration can be very annoying in photomicrography as the image has to be entirely into
focus if we want to capture it on film or on the surface of a CCD or CMOS image sensor.
Luckily lens designers have produced flat-field corrected objectives. They are designated
with the “plan” prefix, Plan Achromat, Plan Fluorite and Plan Apochromat. To obtain
the best results in photomicrography they should be combined with flat photo eyepieces
(Plan or Periplan).

Figure 1.47: Field curvature as a result of the curved surface of a lens (Molecular Expres-
sions c©).

1.4.7 Example and Color Codes

All the specifications we talked about are normally clearly engraved on the barrel of the
objective. An example is given in figure 1.48. Color codes are also used which can be
practical (fig. 1.49). If two color rings are present the one closer to the specimen is the
immersion color code and the other one the magnification color code.

Figure 1.48: Engraved objective specifications (Molecular Expressions c©).

1.5 Illumination techniques 23

Figure 1.49: List of color codes.

1.5 Illumination techniques

Specimens under the microscope normally do not emit light on their own even when
special techniques like fluorescence microscopy13 are used. Therefore the specimen is
illuminated with an artificial light source. Usually tungsten-halogen lamps are used but
LED’s are gaining popularity due to their excellent radiated spectrum14 (fig. 1.50). White
LED’s also emit less infra-red radiation. This results in less dissipation of heat and can
be important as a hot light source can degrade the specimen quickly.

Figure 1.50: Comparison of different light sources (Molecular Expressions c©).

13In fluorescence microscopy the specimen becomes luminescent through excitation of molecules. To
invoke this state of excitement ultraviolet or visible light photons can be used. Hence a light source is
still necessary.

14A uniform distribution of emitted wavelengths represents white light of high quality which is ideal
for microscopy.

24 Introduction to optical microscopy

The specimen can be illuminated in two directions by techniques called transmitted
light microscopy and reflected light microscopy. When using transmitted light microscopy
the light passes through the specimen from underneath and into the microscope’s ob-
jective. In reflected light microscopy a beam splitter in the form of a partially silvered
mirror or prism is used (fig. 1.51), sending the light down the objective and directing the
reflected light back up towards the microscope’s body tube. Reflected light microscopy is
usually used when a specimen, even when sliced very thin, still isn’t translucent enough.
Examples of such specimens are metallurgical samples (metals, wood, polymers, plastics,
semiconductors, . . .) and complete integrated circuits. Most modern optical microscopes
can be used in both configurations as seen in figure 1.52. While transmitted and reflected
light microscopy are two ways of sending the light trough the microscope we can also define
a variety of different illumination techniques. Proper illumination is crucial in achieving
high-quality images in both microscopy and photomicrography. The type of illumination
used defines the color correctness and contrast of the image, the uniformity of brightness
and whether or not lens flare is introduced. We will only discuss Köhler illumination and
darkfield illumination in detail as they are frequently used in this book and the only ones
our Leitz Ergolux microscope supports. Other techniques like phase contrast illumina-
tion, fluorescence microscopy, Rheinberg illumination, etc. are not discussed as they are
specialized techniques and well outside the scope of this book.

Figure 1.51: Reflected light optical path-
way (Molecular Expressions c©).

Figure 1.52: Modern microscope with
both transmitted and reflected light ca-
pabilities (Molecular Expressions c©).

1.5.1 Köhler illumination

Köhler illumination, first introduced in 1893 by August Köhler of the Carl Zeiss cor-
poration, is recommended by all manufacturers of modern microscopes. This technique
produces specimen illumination that’s uniformly bright and free from lens flare making it
perfectly suitable for both microscopy and photomicrography. Köhler illumination is both
elegant and simple (fig. 1.53). A lamp collector lens is placed in front of the light source

1.5 Illumination techniques 25

and focusses the light cone at the level of the aperture diaphragm of the substage con-
denser. Closing or opening the aperture diaphragm then controls the angle of the light,
making sure the lenses inside the condenser produce parallel rays yielding a uniformly
bright illumination of the specimen. Changing this angle changes the size and shape of
the illumination cone coming from the condenser and thus changing the numerical aper-
ture of the optical system and the contrast of the image. Because the light is not focused
at the level of the specimen (hence a different conjugate plane) it is essentially grainless
and does not suffer deterioration from dust and imperfections on the glass surfaces of
the condenser and lamp collector lenses. The diameter (not angle) of the light bundle
can be adjusted with the field diaphragm. Meaning that the field diaphragm does affect
numerical aperture and should not be used to influence illumination intensity. The field
diaphragm should be opened just a bit over the entire viewfield, overdoing it can lead
to lens flare which in his turn leads to loss of contrast. There is however an exception
when objectives with very low magnification are being used. They generally also have
a very low numerical aperture. By using a swing-out top lens the condenser’s aperture
can still be matched to this low value. When this is the case the aperture diaphragm no
longer influences the light cone and the field diaphragm should be used instead. Finally
the image is focussed at the intermediate image plane inside the eyepieces where it can
be seen by the observer’s eye.

Figure 1.53: Light paths in Köhler illumination (Molecular Expressions c©).

26 Introduction to optical microscopy

Illumination intensity should be controlled by the use of neutral density filters or by
reducing the voltage to the lamp. The latter is not usually recommended as turning down
the voltage to much results in a warmer color temperature. The spectrum of the light shifts
more to the red which is not good for microscopy and certainly not for photomicrography.
The light source should be centered to the optical axis of the microscope and a frosted
glass filter can be used on the lamp collector lens to further ensure the evenness of the
light. Centering the lamp is usually done with screws on the lamp housing (fig. 1.54).

Figure 1.54: Screws to center the light source of a Leitz Ergolux microscope.

Some of the rules for Köhler illumination described above also apply when using
reflected light instead of transmitted light. A reflected light substage condenser is easier
to use as it is always at the correct height, already centered reasonably good and doesn’t
need a swing-out top lens. There’s no need to alter the factory settings and therefore
you normally can’t. A field and aperture diaphragm are present just like in transmitted
light microscopy and they can be used to control both brightness and contrast. They
are however switched compared to a transmitted light condenser, first the aperture then
the field diaphragm. The field diaphragm now controls the contrast and the aperture
diaphragm the brightness (fig. 1.55 and fig. 1.56). Notice the pre-focused field iris due to
the fixed height of the condenser.

Figure 1.55: Changing the field diaphragm in reflected light microscopy to alter the
contrast.

1.5 Illumination techniques 27

Figure 1.56: Adjusting the brightness in reflected light microscopy using the aperture
diaphragm.

1.5.2 Darkfield illumination

Darkfield illumination is a simple and popular technique to make unstained transparent
specimens clearly visible. It is obtained by blocking the central light rays which normally
pass trough the specimen (fig. 1.57). This results in a dark background, hence the name.
Only rays from the sides will hit the specimen and won’t directly go into the microscope’s
objective. The light hitting the specimen from the sides will diffract, reflect and/or refract
and these faint rays will enter the objective.

Figure 1.57: Principle of the darkfield illumination technique.

Darkfield illumination is also very popular in reflected light microscopy to enhance
contrast. A darkfield mirror block with a light stop to block the central rays is then used
(fig. 1.58 and fig. 2.17).

28 Introduction to optical microscopy

Figure 1.58: Reflected light darkfield
illumination setup (Molecular Expres-
sions c©).

Figure 1.59: Mirror block for reflected
light darkfield microscopy (Molecular
Expressions c©).

The Leitz Ergolux microscope only has reflected light darkfield capabilities, neverthe-
less let’s compare some examples.

Figure 1.60: Blood cells in normal
brightfield reflected light.

Figure 1.61: The same blood cells under
darkfield reflected light.

1.5 Illumination techniques 29

Reflected light microscopy is mostly used for metallurgical purposes and inspection of
integrated circuits, hence this CMOS sensor example.

Figure 1.62: CMOS image sensor under
normal brightfield reflected light show-
ing the typical Bayer pattern.

Figure 1.63: CMOS sensor under dark-
field illumination.

30 Introduction to optical microscopy

Chapter 2

Leitz Ergolux: a short manual

This short manual is mainly aimed at the VISICS staff having to work with this specific
microscope, the Leitz Ergolux. The original company, Ernst Leitz GmbH, has been split
up and reformed in 1983 creating Leica Camera AG, Leica Geosystems AG and Leica
Microsystems GmbH. This gives us a fair idea of how old the microscope is but this also
meant having no luck at getting our hands on a manual. So we have to write our own.

2.1 Lab Setup

Below you can see an overview of the microscope setup at the laboratory. The most
important parts are highlighted and we will explain them individually.

Figure 2.1: Overview of the lab setup.

32 Leitz Ergolux: a short manual

2.1.1 Cameras

In the lab we tested two AVT cameras which could easily be mounted on the cam-
era adapter (Marlin and Dolphin camera families fig. 2.2 and fig. 2.3). Allied Vision
Technologies offers high grade cameras for industrial and scientific image processing
(http://www.alliedvisiontec.com/). Since microscopic photography involves a high level
of detail resolution is an extra important factor for us.

Figure 2.2: AVT Marlin. Figure 2.3: AVT Dolphin.

2.1.2 Lamp and lamp power source

Originally the Ergolux came with spare light bulbs to fit into the lamp housing at the back
of the microscope. However, we can assume lamp quality is strongly risen over the years.
Therefore we’ve chosen a new Philips 100W/12V lamp suited especially for microscopes
(fig. 2.4 and appendix B).

Figure 2.4: Philips microscope lamp.

The lamp’s voltage, thus brightness, can be controlled with an external power source
which can be important in Köhler illumination (fig. 2.5). The power source is connected
to a power outlet on one side and to the lamp housing on the other. The lamp housing has
screws to position the lamp and it’s filament, which we already discussed in section 1.5.1.
The housing can be placed on the bottom or the top of the microscope, respectively for
normal and reflected microscopy.

http://www.alliedvisiontec.com/

2.1 Lab Setup 33

Figure 2.5: Leitz external 12V lamp source.

2.1.3 Camera adapter and mounting the camera

The ergolux microscope was equipped with a camera adapter for the original analog film
camera. Luckily for us the mechanical connection has not changed over the years so our
digital AVT cameras can be easily mounted on top of this adapter. The adapter consists
of 4 pieces (fig. 2.6) plus a fifth photo eyepiece which should be inserted to make the
optical connection.

Figure 2.6: Ergolux camera adapter.

Three photo eyepieces are available in the lab but only the 3.2X and especially the 8X
piece give good results with our cameras (fig. 2.7). Normal eyepieces can also be fitted
inside the camera adapter and although they are not designed for this they sometimes
yield good results.

When the adapter, with the camera screwed on, is fitted on top op de microscope the
focal distance should be taken into account. This can be visually checked by adjusting
the height until all lens flare is removed from the image (fig. 2.8). A thumbscrew to lock
the adapter in it’s final position is available.

A good way to check for lens flare is to focus the microscope on the stage micrometer
that was supplied. Subsequently one can calibrate their microscopic measurements as the
engravings in the micrometer are 10, 50, 100 and 500 micrometers apart (fig. 2.9).

34 Leitz Ergolux: a short manual

Figure 2.7: Photopieces to be fitted inside the camera adapter.

Figure 2.8: Properly mounting the camera and the adapter.

Figure 2.9: Removing lens flare by adjusting the adapter height.

2.2 Focussing on a sample 35

2.2 Focussing on a sample

The Ergolux has two focussing knobs on each side, the small one is for fine tuning
(fig. 2.10). A good working method is to put the glass with the specimen in place,
put the objective to the side of the specimen glass (just touching!), raise the objective
slightly with the one of the turning knobs, position the specimen under the objective and
fine tune with the small knob until the image is in focus. This is safer because at high
magnifications the working distances become so small one can easily go to far and damage
the specimen or the glass.

Figure 2.10: Focus turning knobs on the Ergolux.

2.3 Revolver and objectives

The revolver is mechanically powered when the microscope is turned on (ON/OFF button
on the left side, underneath the focus knobs). It can house up to five different objectives
which can be turned both ways with a button (fig. 2.11 and fig. 2.12). Always put
the revolver in a high position when switching objectives because not all objectives are
the same size and this could terrible damage their lens heads. In the lab the following
objectives are available:

- R Pl 2x/0.04 infinity/-

- NPL 20x/0.35 DF infinity/0

- NPL FLUOTAR 16x/0.45 160/0.17

- NPL 5x/0.09 DF infinity/-

- NPL 10x/0.20 DF infinity/0

- NPL FLUOTAR 50x/0.85 DF infinity/0 1

1Even though this part was badly damaged by a previous user it still produces very good images.

36 Leitz Ergolux: a short manual

Figure 2.11: The revolver’s turning but-
ton, on the right side, in the foot of the
microscope.

Figure 2.12: The revolver with 5 objec-
tives mounted.

2.4 Filters

Different color and light attenuating filters can be used with the Ergolux microscope
(fig. 2.13). The large ones can be fitted in the base of the microscope, in the field di-
aphragm (fig. 2.14), for transmitted light microscopy. The small ones go in the reflected
light block for reflected light microscopy (fig. 2.15). An example of their usage has already
been described in section 1.3.6.

Figure 2.13: Light attenuating filters.

2.5 Illumination

Transmitted light microscopy can be controlled through the substage condenser above the
foot stand of the microscope (fig. 2.16). We’ve already discussed setting up proper Köhler
illumination in section 1.3.4. A nice java applet for Köhler illumination can be found
at http://www.microscopyu.com/tutorials/java/kohler/. For Reflected light microscopy
this was discussed in section 1.5. The Erglux’ darkfield illumination is easily enabled by
sliding the black darkfield mirror block into position, located in the reflected light block

http://www.microscopyu.com/tutorials/java/kohler/

2.5 Illumination 37

Figure 2.14: The field diaphragm with a
yellow color filter fitted.

Figure 2.15: The Ergolux’ reflected light
block with filter slots.

as highlighted in figure 2.17.

Figure 2.16: Ergolux substage con-
denser.

Figure 2.17: Mirror block slides in for
darkfield illumination.

38 Leitz Ergolux: a short manual

Chapter 3

Image Acquisition

In this chapter we will explain in short the IIDC standard, different video formats and how
we actually capture images with libdc1394. Libdc1394 is the C/C++ capturing library
we’ve chosen for our software. After also considering other alternatives (you can read
about them in the literature study) libdc1394 seemed to have to best future road map for
full triple platform compatibility. Linux and Windows compatibility is important, OS X
compliance is a nice extra. Currently libdc1394 works perfectly on the first and the latter
but the Windows port has not yet been released. Recently the project (version 2.0.x)
got out of release candidate so no doubt it will attract more developers and a Windows
version will see daylight pretty soon.

3.1 IIDC

IIDC (Instrumentation & Industrial Digital Camera) is the FireWire data format standard
for live video and was previously known as the DCAM standard [9]. Cameras that follow
the IIDC or DCAM specifications are FireWire based cameras (ieee1394 or ieee1394b)
which are preferred over USB based cameras in most scientific midst. It is special in
a way that is transmits uncompressed video over the FireWire bus unlike the ordinary
DV (Digital Video) camcorder protocol. The standard is aimed at cameras for industrial
applications like machine vision systems and other computer vision applications. The
fact that incoming images are uncompressed reduces the load on the system processing
them which is useful when embedded systems, generally equipped with less CPU power,
are used. IIDC allows camera manufacturers to implement popular imaging algorithms
inside the camera itself. The user then has the ability to let the camera do the image
processing before sending the result over the bus. This is an advantage in both processing
time, as the controller on the camera is optimized for such algorithms, and application
programming effort. Documentation can be found on the official 1394 Trace Association
website http://www.1394ta.org/Technology/Specifications/.

http://www.1394ta.org/Technology/Specifications/

40 Image Acquisition

3.2 Video Formats

IIDC cameras support different video formats and each format supports different resolu-
tion and color modes (see: Appendix A). One special mode called Format 7 allows the
user to set a custom frame size (width, height) and position (top, left) to only view a
part of actual image. Format 7 also allows for a custom byte per packet value to define a
maximum transfer speed over the bus (e.g. when the FireWire cable is too long and 400
Mbps is causing problems). Because this value defines the frame transfer speed it is also
related to the actual framerate. A range of color modes is also available depending on the
chosen format 7 mode. Our application has basic format 7 support.

3.3 Image Processing Libraries

Although the software designed is mainly aimed at capturing images rather than process-
ing them it should be fairly easy to enhance it’s functionality by using image processing
libraries. Two well known free libraries are the Integrating Vision Toolkit
http://ivt.sourceforge.net/ and Intel’s Open Source Computer Vision Library
http://opencvlibrary.sourceforge.net/. We mention them here for any developer that
wants to customize our software for specific needs.

3.4 Libdc1394

We quote from the libdc1394 website:

Libdc1394 is a library that provides a complete high level application pro-
gramming interface (API) for developers who wish to control IEEE 1394 based
cameras that conform to the 1394-based Digital Camera Specifications (also
known as the IIDC or DCAM Specifications). The library currently works on
Linux, Mac OSX and (soon) Windows.

This means that the same code base currently compiles and runs flawlessly on both Linux
and OS X and this should also be true for Windows in the future. Documentation is
provided on the projects homepage http://damien.douxchamps.net/ieee1394/libdc1394/
and is sufficient and clear but not really up to date as the project is very active and
undergoes regular changes. However the source code is well documented and clean and
because the project is not that big you catch up rather quick. It has support for format
7 and special AVT1 functions are available if needed in the future. The API works pretty
low level which results in a dozen lines of code before we can begin camera capture
but it also means flexibility (we can access all camera settings provided by the IIDC
standard separately). The API can be downloaded at the projects SourceForge page
http://sourceforge.net/projects/libdc1394/ and comes with some small sample programs
to get you started. Some Linux distributions provide a binary package, otherwise you’ll
have to compile and install from source. Furthermore there is no need for a specific vendor

1Allied Vision Technologies cameras are the ones we use at VISICS.

http://ivt.sourceforge.net/
http://opencvlibrary.sourceforge.net/
http://damien.douxchamps.net/ieee1394/libdc1394/
http://sourceforge.net/projects/libdc1394/

3.4 Libdc1394 41

driver2 which is another advantage of using IIDC to control the camera. Our software
therefore should work with all IIDC compatible cameras, directly through the FireWire
bus. In the end the software was tested with a webcam and two AVT industry grade
cameras. In the rest of this section we will discuss the inner workings of this library and
how to use it.

3.4.1 Capture setup

Setting up libdc1394 from within a C/C++ project is fairly straightforward. First of all
we have to include the library header file which should be available to us if we installed
the library correctly.

#include <dc1394/dc1394 . h>

Next we should define some elements that are needed to set up basic capture.

// the camera
dc1394camera t ∗camera ;
// frame width and he i g h t
unsigned int width , he ight ;
//a v ideo frame
dc1394v ideo f rame t ∗ frame=NULL;
// t h i s i s a con t ex t in which cameras can be searched and used
dc1394 t ∗ d ;
// l i s t o f a l l a v a i l a b l e cameras
d c 1 3 9 4 c a m e r a l i s t t ∗ l i s t ;
//a v a r i a b l e to s t o r e l i b dc1394 error codes
dc1394e r r o r t e r r ;

Now we can get a list of all cameras attached to the system.

// crea t e a new l i bdc1394 con t ex t
d = dc1394 new () ;
// genera te the l i s t o f a l l a v a i l a b l e cameras
e r r = dc1394 camera enumerate (d , &l i s t) ;

Libdc1394 uses a range of internal error codes and provides functions to catch them and
display them to the user via the console. Almost all functions within libdc1394 return
these error codes. In the following snippet of code we will initialize the first camera on
the bus, camera 0. After we have selected a camera we can free the list if we don’t need
it anymore.

DC1394 ERR RTN(err , ” Fa i l ed to enumerate cameras”) ;

i f (l i s t −>num == 0) {
d c 1 3 9 4 l o g e r r o r (”No cameras found”) ;
return 1 ;

}

2It does need some other FireWire libraries installed on Linux like raw1394 and others.

42 Image Acquisition

// i n i t i a l i z e the f i r s t camera on the bus
camera = dc1394 camera new (d , l i s t −>i d s [0] . guid) ;

i f (! camera) {
d c 1 3 9 4 l o g e r r o r (” Fa i l ed to i n i t i a l i z e camera with guid %l l x ” ,
l i s t −>i d s [0] . guid) ;
return 1 ;

}

d c 1 3 9 4 c a m e r a f r e e l i s t (l i s t) ;

Since we are developing a graphical application the error catching macro DC1394 ERR RTN
and function dc1394 log error will be replaced by our own. We will ignore the libdc1394
errors in the rest of this example3. Now before we can start the camera we must first set
up the transmission.

d c 1 3 9 4 v i d e o s e t i s o s p e e d (camera , DC1394 ISO SPEED 400) ;
dc1394 v ideo set mode (camera , DC1394 VIDEO MODE 640x480 RGB8) ;
d c 1 3 9 4 v i d e o s e t f r a m e r a t e (camera , DC1394 FRAMERATE 7 5) ;
dc1394 capture se tup (camera , 4 , DC1394 CAPTURE FLAGS DEFAULT) ;

Of course different settings can be used with these functions. ISO speeds 100, 200, 400
and 800 are possible. Capture resolutions from 160x120 to 1600x1200 in various color
modes (RGB, MONO, YUV) and framerates up to 240fps can be set. The last function
sets up the ring buffer (more on this later) where 4 is the default number of frames in the
buffer. Finally we can have the camera start sending us data.

d c 1 3 9 4 v i d e o s e t t r a n s m i s s i o n (camera , DC1394 ON) ;

The camera is now transmitting frames and consequently our frame buffer is filling up at
the desired framerate.

3.4.2 Ring buffer

To store the frames coming from the camera libdc1394 uses a circular buffer (fig. 3.1).
Such a structure is often used for buffering data streams. It has a fixed size of memory
mapped frame buffers that can be set with the dc1394 capture setup() function. We must
manually grab the frames from the buffer and free their space otherwise the buffer will
fill up and we will lose frames. The following function returns a pointer to the first frame
structure in the ring.

dc1394 capture dequeue (camera , DC1394 CAPTURE POLICY WAIT, &frame) ;

Now we can do stuff with the actual image which is stored as a uint 8 matrix inside the
frame structure. When we are done with the frame we must free it to make room for a
new one.

dc1394 capture enqueue (camera , frame) ;

3This example is based on the grab color image.c example that came with the library.

3.4 Libdc1394 43

When we don’t enqueue the buffer in time it will fill up completely and capturing will
stop. Consequently we must dequeue and enqueue at the camera’s framerate if we don’t
want any dropped frames. The buffer can consist out of only one frame but we recommend
more to counter frame loss due to timing variations. One can also call multiple dequeue
functions in a row to get pointers to successive frames in the buffer, for example to compare
them. In memory the buffer is presented as a circularly-linked list (fig. 3.2).

camera

dequeue
&

enqueue

dequeue
&

enqueue

Figure 3.1: Ring buffer structure con-
taining the frames.

Figure 3.2: Ring buffer structure in
memory.

The first frames coming from the camera are usually useless because the camera needs
some time to adjust, mostly due to automatic features. The number of corrupted frames
depends on the camera.

Figure 3.3: The first, third and sixth frame.

Fetching frames from the ring buffer can be done in two ways, either by waiting on a
frame or polling for a frame (DC1394 CAPTURE POLICY WAIT or
DC1394 CAPTURE POLICY POLL). It is generally smarter to poll for a frame as oth-
erwise when no frame is present you’re program will wait for a new one and consequently
hangs at this point. When using the polling method a NULL pointer is returned when
no new frame is ready in the ring buffer.

44 Image Acquisition

3.4.3 Cleaning up

If we want to stop transmission or close our program we must clean up properly. First
stop the transmission then free the structures properly.

d c 1 3 9 4 v i d e o s e t t r a n s m i s s i o n (camera , DC1394 OFF) ;
dc1394 capture s top (camera) ;
dc1394 camera f ree (camera) ;
d c1394 f r e e (d) ;

If for some reason this should not happen nicely (program crashes, users plugs out cam-
era,. . .) it could be necessary to reset the bus.

dc1394 r e s e t bus (camera) ;

3.4.4 libdc1394 2.0.1 functions

Here we explain (in short) some other libdc1394 functions one can encounter when reading
the source code of our application. This will come in handy because documentation on
the official site is sparse and outdated. For more details we refer to libdc1394’s source
code.

dc1394 video get supported modes() gets all the supported video modes for a given cam-
era.

Defined in: video.h

Usage:

dc1394e r r o r t dc1394 v ideo get supported modes (dc1394camera t ∗camera ,
dc1394video modes t ∗video modes) ;

dc1394 video get supported framerates() gets all the supported framerates for a given
camera and video mode.

Defined in: video.h

Usage:

dc1394e r r o r t dc1394 v ideo ge t suppor t ed f r amera t e s (dc1394camera t ∗camera ,
dc1394video mode t video mode , dc1394 f ramerate s t ∗ f ramerate s) ;

dc1394 video get mode() gets the current video mode from the camera.

Defined in: video.h

Usage:

dc1394e r r o r t dc1394 video get mode (dc1394camera t ∗camera ,
dc1394video mode t ∗video mode) ;

dc1394 video set mode() sets the camera to the specified video mode.

Defined in: video.h

Usage:

3.4 Libdc1394 45

dc1394e r r o r t dc1394 v ideo set mode (dc1394camera t ∗camera ,
dc1394video mode t video mode) ;

dc1394 video get framerate() gets the current framerate from the camera, the returned
value is only meaningful when not in Format 7 mode.

Defined in: video.h

Usage:

dc1394e r r o r t dc1394 v ideo ge t f r amera t e (dc1394camera t ∗camera ,
dc1394 f ramerate t ∗ f ramerate) ;

dc1394 video set framerate() sets the camera to the specified framerate, this function
returns an error when the camera is in Format 7 mode.

Defined in: video.h

Usage:

dc1394e r r o r t d c 1 3 9 4 v i d e o s e t f r a m e r a t e (dc1394camera t ∗camera ,
dc1394 f ramerate t f ramerate) ;

dc1394 video get iso speed() gets the current iso speed.

Defined in: video.h

Usage:

dc1394e r r o r t d c 1 3 9 4 v i d e o g e t i s o s p e e d (dc1394camera t ∗camera ,
dc1394speed t ∗ speed) ;

dc1394 video set iso speed() sets the current iso speed.

Defined in: video.h

Usage:

dc1394e r r o r t d c 1 3 9 4 v i d e o s e t i s o s p e e d (dc1394camera t ∗camera ,
dc1394speed t speed) ;

dc1394 format7 get color codings() gets all the available color codings for a given for-
mat 7 mode and camera.

Defined in: format7.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f o r m a t 7 g e t c o l o r c o d i n g s (dc1394camera t ∗camera ,
dc1394video mode t video mode , d c 1 3 9 4 c o l o r c o d i n g s t ∗ cod ings) ;

dc1394 format7 set color coding() sets the selected color coding for a given format 7
mode and camera.

Defined in: format7.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f o r m a t 7 s e t c o l o r c o d i n g (dc1394camera t ∗camera ,
dc1394video mode t video mode , d c 1 3 9 4 c o l o r c o d i n g t c o l o r c o d i n g) ;

46 Image Acquisition

dc1394 format7 get max image size() gets the maximal image size for a given format
7 mode, we use this to constraint user input.

Defined in: format7.h

Usage:

dc1394e r r o r t dc1394 format7 get max image s i ze (dc1394camera t ∗camera ,
dc1394video mode t video mode , u i n t 3 2 t ∗ h s i z e , u i n t 3 2 t ∗ v s i z e) ;

dc1394 feature get all() gets a list of features and whether or not they are available for
the given camera.

Defined in: control.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f e a t u r e g e t a l l (dc1394camera t ∗camera ,
d c 1 3 9 4 f e a t u r e s e t t ∗ f e a t u r e s) ;

dc1394 feature get value() gets the current value of a given feature.

Defined in: control.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f e a t u r e g e t v a l u e (dc1394camera t ∗camera ,
d c 13 9 4 f ea t u r e t f ea ture , u i n t 3 2 t ∗ value) ;

dc1394 feature set value() sets a feature to the specified (valid) value.

Defined in: control.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f e a t u r e s e t v a l u e (dc1394camera t ∗camera ,
d c 13 9 4 f ea t u r e t f ea ture , u i n t 3 2 t va lue) ;

dc1394 feature get mode() gets the current mode for a given feature, values can be
DC1394 FEATURE MODE AUTO or DC1394 FEATURE MODE MANUAL.

Defined in: control.h

Usage:

dc1394e r r o r t dc1394 feature get mode (dc1394camera t ∗camera ,
d c 13 9 4 f ea t u r e t f ea ture , dc1394feature mode t ∗mode) ;

dc1394 feature set mode() set the given feature to manual or automatic.

Defined in: control.h

Usage:

dc1394e r r o r t dc1394 f ea ture s e t mode (dc1394camera t ∗camera ,
d c 13 9 4 f ea t u r e t f ea ture , dc1394feature mode t mode) ;

dc1394 feature whitebalance get value() gets the current values for the white balance,
a U and V value is returned.

Defined in: control.h

Usage:

3.4 Libdc1394 47

dc1394e r r o r t d c 1 3 9 4 f e a t u r e w h i t e b a l a n c e g e t v a l u e (dc1394camera t ∗camera ,
u i n t 3 2 t ∗u b value , u i n t 3 2 t ∗ v r v a l u e) ;

dc1394 feature whitebalance set value() sets the white balance by means of a U and V
channel value.

Defined in: control.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f e a t u r e w h i t e b a l a n c e s e t v a l u e (
dc1394camera t ∗camera , u i n t 3 2 t u b value , u i n t 3 2 t v r v a l u e) ;

dc1394 feature is present() checks whether or not a feature is supported by a camera.

Defined in: control.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f e a t u r e i s p r e s e n t (dc1394camera t ∗camera ,
d c 13 9 4 f e a t u r e t f ea ture , dc1394boo l t ∗ value) ;

dc1394 feature get boundaries() gets the min/max values for a given feature and cam-
era, only useful when the feature is supported by the camera.

Defined in: control.h

Usage:

dc1394e r r o r t d c 1 3 9 4 f e a t u r e g e t b o u n d a r i e s (dc1394camera t ∗camera ,
d c 13 9 4 f e a t u r e t f ea ture , u i n t 3 2 t ∗min , u i n t 3 2 t ∗max) ;

48 Image Acquisition

Chapter 4

Software

The following chapter talks about the design of our software application. The most
important requirement was using Trolltech’s Qt1 as a base for the GUI. Unlike the al-
ready existing Coriander application http://damien.douxchamps.net/ieee1394/coriander/
which is Linux only, we aim to create a platform independent graphical user interface for
libdc1394. No such program exists at this time of writing and although ours will not be as
full-featured as Coriander, all the basic functionality will be there. The most important
but also most troublesome task is to get the raw images from the capture library into our
application and displaying them fluently. You will read about our findings here but we
also leave some room for improvement.

4.1 About Qt

Qt (pronounced “cute”) is a platform independent framework for the development of
GUI programs. Some modules included in Qt can be used separately from the graphical
user interface to create command-line driven tools. Qt itself is based on C++ and open
source but requires a license when used for commercial applications. When creating
GUI’s the developer combines different elements or so-called “widgets”. These widgets
can be predefined (window, input box, button,. . .) or subclassed from these to add more
functionality. Generally a Qt/C++ projects contains a bunch of source files, header files,
a resources file and a special .pro file to combine everything into a project. Out of this
.pro file we can automatically generate a make file by running the following command
from the console.

qmake foobar . pro

Compiling and linking of the project is then easily initiated by running the make
command.

make

Our project should compile flawlessly, if you have libdc1394 2.0.1 and Qt 4.3 or higher
installed. For more information about libdc1394 read chapter 3. Qt can be obtained (open

1Trolltech was recently acquired by Nokia.

http://damien.douxchamps.net/ieee1394/coriander/

50 Software

source or commercial) from their website http://trolltech.com/products/qt. If you are
starting Qt development the reference pages are a good place to start http://doc.trolltech.com/
or the mailing lists and their archives if you run into trouble http://lists.trolltech.com/.

4.2 Application outline

As a design approach we’ve chosen a Single Document Interface (SDI) for our program.
Multiple instances of the main window can be started, independently of each other, so
multiple cameras can be addressed at the same time2. A monitor widget inside the main
window shows the camera stream and extra functionality is added by different dialogs.
The user can access these dialogs via the menu bar. Screenshots of our application after
startup are shown in figure 4.1 for both the Linux and the OS X version.

Figure 4.1: Linux version (left) and OS X version (right).

4.3 Loading an image

A video frame captured by libdc1394 (or any other capturing library for that matter) is
usually in the form of an unsigned integer matrix. The size of this matrix depends on
the color depth of the image and the resolution. Usually the size is width x height x 8bit
for a monochrome image with 8 bits/pixel, multiply this by 3 for an image with color
information (RGB, YUV,. . .). 16 bits/pixel formats also exists for very sophisticated
cameras.

We must load this image data into a format we can use inside Qt, for example to
draw onto the screen or to save the image easily to disk. Two internal formats for image
presentation are present, QImage and QPixmap (a QPicture class also exist, but this is

2Although opening two completely independent versions is faster because our program does not sup-
port multithreading yet.

http://trolltech.com/products/qt
http://doc.trolltech.com/
http://lists.trolltech.com/

4.3 Loading an image 51

something completely different). Supposedly using a QPixmap to draw onto a widget
is faster (or a sequence of images), because it uses the native drawing engine of the OS
(e.g. X11 on Linux/Unix). A QImage on the other hand is optimized for I/O and pixel
operations, which makes it more flexible to use. It does not use the native drawing
engine but Qt’s own and therefore gives the same exact results on all platforms. Qt
documentation [14] states the use of both as:

Typically, the QImage class is used to load an image file, optionally manipu-
lating the image data, before the QImage object is converted into a QPixmap
to be shown on screen.

To our experience however, converting the QImage to a QPixmap before drawing does
not yield a noticeable performance increase. QImage independence of the native drawing
engine also allows for special effects like anti-aliasing, different composition modes, alpha
blending, . . . to be identical on all platforms. Most importantly saving images to disk is
very easy with QImage due to it’s optimized I/O functions. Numerous formats like .bmp,
.tiff, .jpg, .png, etc. are supported. A QImage object to store a color image is always in a
three layer RGB format plus a fourth layer which is either ignored (0xffRRGGBB) or used
for the alpha channel (0xAARRGGBB). The alpha channel defines the opacity relative
to the background. Now before we can load the QImage with our camera frame we must
first convert the 3 layer presentation (24bit) to this 4 layer version by artificially adding
an alpha channel (32bit format). For this purpose we’ve written conversion functions, for
example the next function does an RGB24 to RGB32 conversion by stuffing each fourth
byte with alpha channel information.

void RGB24 to RGB32(u i n t 8 t ∗ src , u i n t 8 t ∗dest , u i n t 3 2 t width ,
u i n t 3 2 t he ight){

register int i = (width∗ he ight ∗3)−1;
register int j = (width∗ he ight ∗4)−1;
register int r , g , b , alpha = 255 ; // opac i t y 100%

while (j >= 0) {

b = s r c [i −−];
g = s r c [i −−];
r = s r c [i −−];

de s t [j−−] = alpha ;
des t [j−−] = r ;
des t [j−−] = g ;
des t [j−−] = b ;
}

}

Other conversion functions (MONO8 to RGB32, YUV4xx to RGB32) have been writ-
ten and are partially based on existing libdc1394 functions and macros (myconv.h). You
can review them in Appendix C. To test the cost of such conversions we developed a
small benchmark application. This application calculates the average conversion time out

52 Software

of 1000 conversions based on a random dummy image. This test is then run several times
for common resolutions and different color mode conversions. To get an even better idea
we’ve put an old an a new system head to head in the test. The results can be seen in
figure 4.2 for an old Pentium 3 - 733Mhz and figure 4.3 shows the same test for a new
Core Duo - 2Ghz3.

Figure 4.2: Pentium III benchmark results.

Figure 4.3: Core Duo benchmark results.

3Only one out of two cores was used because our test program does not support multithreading.

4.4 Signals between Widgets 53

The tests show a significant increase in performance on the newer system, which
was expected. The gap between the various YUV4xx conversions becomes smaller but
the speed difference with the functions that have no color transformation, only byte
stuffing, is still noticeable. Nevertheless copying pixels is still a costly operation, even on
a fast machine. These conversion times become problematic at high resolutions or high
framerates. For example when capturing at 30 fps the maximum time it may take for
one frame to be converted is 33 ms. If higher we will experience delays and most likely
dropped frames.

Supposedly we could speed the functions up by using bit shifts instead of multiplica-
tions and pointers instead of temporary variables. The same function as we’ve seen before
would then look like this.

void RGB24 to RGB32 0 (u i n t 8 t ∗ src , u i n t 8 t ∗dest , u i n t 3 2 t width ,
u i n t 3 2 t he ight){

register int j = ((width∗ he ight) << 2) −1;

while (j >= 0) {

∗ dest++ = ∗(s r c +2);
∗ dest++ = ∗(s r c +1);
∗ dest++ = ∗(s r c) ;
∗ dest++ = 255 ;
s r c = s r c + 3 ;
j = j − 4 ;
}

}

However this has absolutely no noticeable result so we stick to the original functions for
convenience.

4.4 Signals between Widgets

As seen in the introduction about Qt a general Qt application consists out of various
widgets. These can be seen as independent objects, not knowing about the existence of
one another. Of course a mechanism is needed to set up communication between these
widgets, to signal events and pass information between them. This is accomplished with
signals and slots. Signals are emitted by a widget and are connected to a slot belonging
to another widget. The slot is actually just like a function and is executed immediately
after the corresponding signal is received.

connect (sender object , SIGNAL, r e c e i v e r object , SLOT)

The signals themselves can contain data which gives the same results as evoking the
slot function with certain parameters. Consequently the signal and slot definitions should
contain the same parameters and are always return type void.

54 Software

// in the sender ’ s c l a s s d e f i n i t i o n
s i g n a l s :

void sendCameraPointer (dc1394camera t ∗camera) ;

// in the r e c e i v e r ’ s c l a s s d e f i n i t i o n
public s l o t s :

void acceptCameraPointer (dc1394camera t ∗camera) ;

// the connect ion
connect (sender object , SIGNAL(sendCameraPointer (dc1394camera t)) ,
r e c e i v e r object , SLOT(acceptCameraPointer (dc1394camera t))) ;

Signals can also be relayed through another widget as can be seen on figure 4.4.
The signals between the Monitor widget and the Dialog widgets are relayed through
their parent widget MainWindow as only MainWindow has knowledge of all the other
(child)widgets.

main
(hidden)

Mainwindow

StatusBar

MenuBar

Monitor

MultigrabDialog

FeatureDialog

CaptureDialog

SelectDialog

RecordDialog

ReticlesDialog

OptionsDialog

Figure 4.4: Schematic presentation of signals between our different Qt widgets.

4.5 Classes

In this section we will discuss the various classes we’ve created. Almost all of them (except
for the Monitor class) are subclassed from the existing QDialog class. These dialogs are
the main interface to the user and thus add functionality to our program. The monitor
class is subclassed from a QGLWidget for hardware accelerated drawing onto the screen.

4.5.1 SelectDialog

The SelectDialog class provides a dialog for the user to select a camera out of all the
available cameras detected on the FireWire bus (fig. 4.5). It uses libdc1394 functions to

4.5 Classes 55

get a list of all the available cameras but does not initiate capture itself. This is left to
the Monitor class which catches the signal emitted by the SelectDialog.

Figure 4.5: The camera selection dialog.

When the list of cameras is created (see: example chapter 3) we can enumerate them
inside a QComboBox. The corresponding camera number is then signaled to the Monitor,
through their parent widget MainWindow, when the user clicks ok. Capture is immedi-
ately started at the lowest supported resolution and the highest framerate. When cancel
is clicked we do nothing but call the close() function on the dialog.

for (unsigned int i = 0 ; i <= (l i s t −>num − 1) ; i ++){
cameraComboBox−>addItem ((t r (”camera %1”) . arg (i)) , i) ;

}

When a libdc1394 error occurs or no camera is found a nice messagebox informs the
user of the problem. When running our program on a Linux machine a common libdc1394
error occurs when the user has no read/write permissions on the FireWire device. To fix
this login as root (or use sudo) and run the following command.

(sudo) chmod 777 /dev/raw1394

This issue does not occur when running our application on OS X unix.

4.5.2 CaptureDialog

The CaptureDialog let’s the user choose a number of capture settings and displays some
basic info about the selected camera (fig. 4.6). Capture settings include the image reso-
lution, the color mode, the framerate and the FireWire bandwidth usage. Only the video
modes supported by the active camera can be chosen and their corresponding framerates4.
Generally one should always keep the ISO speed at 400Mbps (default) or 800Mbps when
the camera supports it (experimental - not tested). 200Mbps and 100Mbps should only be
used when having problems communication at high speeds over very long FireWire cables.
Functions to get the current iso speed and set a new one are reviewed in section 3.4.4.
We can enumerate the supported modes like this.

4E.g. our test camera only supports 30 fps in YUV411/MONO8 mode.

56 Software

// l i s t o f a v a i l a b l e modes
dc1394video modes t video modes ;

// load the modes f o r t h i s camera
dc1394 v ideo get supported modes (camera , &video modes) ;

//enumerate them in s i d e a QComboBox
for (unsigned int i = 0 ; i <= (video modes .num − 1) ; i ++){

generalTab−>modeComboBox−>addItem (enumToString (video modes . modes [i]) ,
(video modes . modes [i])) ; }

The same can be done for the framerate. The video mode is used as an extra parameter
because the supported framerates depend on the selected video mode.

// l i s t o f suppor ted f ramerates in a mode
dc1394 f ramerate s t f ramerate s ;

// load the f ramerates f o r t h i s camera and mode
dc1394 v ideo ge t suppor t ed f r amera t e s (camera , videoMode , &f ramerate s) ;

//enumerate them in s i d e a QComboBox
for (unsigned int i = 0 ; i <= (f ramerate s .num − 1) ; i ++){

generalTab−>framerateComboBox−>addItem (enumToString (
f ramerate s . f ramerate s [i]) , (f ramerate s . f ramerate s [i])) ;

}

Now the user can select the videomode and corresponding framerate. When ok is
clicked a signal is sent to the Monitor widget to restart capturing with the new settings.
Take note that the enumToString() function is one of our own functions that translates
libdc1394 numerical codes into their corresponding QStrings. Is it defined in mytrans.h.

Figure 4.6: The capture settings dialog.

4.5 Classes 57

When the selected camera also supports Format 7 mode one can also set the frame
position and size. In this case no framerate can be set as this depends on the camera’s
ability to capture a given frame size at a given color mode. If the format 7 ROI5 is small,
a high framerate will be achieved and vice versa. The framerate is partially related to
the bytes per packet value which is needed to set up Format 7 transfer mode with the
camera. When the ROI is set we can ask the camera for a recommended byte per packet
value for the given frame size. Using a value lower than the recommended one results
in a less than ideal framerate as the camera will not be able to transfer the images as
fast at it can capture them. A higher bbp value has no use and will only result in more
bandwidth usage than necessary. Since the framerate cannot exactly be derived from the
bbp value we must check with regular intervals to see if a new frame was received. Setting
this polling interval to 30 times per second should be sufficient, even for very small ROI’s.
The corresponding code snippet for this can be seen in section 4.5.8.

Figure 4.7: Setting the Format 7 op-
tions.

Figure 4.8: Resulting ROI camera
stream.

To validate the user input for the position and size of the frame we can get the
maximum image size for a given Format 7 mode and camera.

dc1394 format7 get max image s i ze (camera , currentMode ,
&maxWidth , &maxHeight) ;

As long as top, left, width and height are positive integers and

left + width < maxWidth
top + height < maxHeight

the ROI input is valid. A schematic view is shown in figure 4.9.

5Region Of Interest

58 Software

ROI

width

height

(left, top)

maximum width

maximum
height

(0, 0)

Figure 4.9: Format 7 ROI within the image size constraint.

Each format 7 mode supports different color codings. We can get them using the
dc1394 format7 get color codings() function and set the selected one with
dc1394 format7 set color coding() (see: section 3.4.4).

4.5.3 FeatureDialog

The FeatureDialog class enables the user to change certain camera features like brightness,
hue, saturation, etc.

Figure 4.10: The features settings dialog.

4.5 Classes 59

When the dialog is evoked we first determine whether or not a certain feature is
supported by the connected camera, if not we disable user input for that feature. For the
supported ones we first load in the current values and their working mode (auto/manual).
If setting a feature to automatic has no effect, the camera probably does not support
auto mode on that feature. The IIDC standaard and libdc1394 support numerous camera
features. In our program only the important ones are currently implemented as can be
seen in figure 4.10. We support: brightness, hue, saturation, gamma, white balance,
exposure, sharpness, shutter, gain, focus.

The following function can load any camera feature we use into our Qt dialog widget
(except for whitebalance which has more parameters).

bool FeatureDia log : : i n i t F e a t u r e (d c1 3 9 4 f e a t u r e t cameraFeature ,
QSl ider ∗ s l i d e r , QSpinBox ∗ spinbox , QCheckBox ∗ checkbox){

dc1394e r r o r t e r r = DC1394 SUCCESS ;
dc1394feature mode t mode ;
u i n t 3 2 t currentFeatureValue = 0 ;
u i n t 3 2 t min = 0 , max = 0 ;
dc1394boo l t i s P r e s e n t ;

// f i r s t check i f the f e a t u r e i s a v a i l a b l e
e r r = d c 1 3 9 4 f e a t u r e i s p r e s e n t (camera , cameraFeature , &i s P r e s e n t) ;
i f (e r r){

l ibdcErrorMessage (err , ”Could not get f e a t u r e ! ”) ;
return fa l se ;

}

i f (i s P r e s e n t){
// f i r s t g e t the curren t va lue
e r r = d c 1 3 9 4 f e a t u r e g e t v a l u e (camera , cameraFeature ,
¤tFeatureValue) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not get f e a t u r e value ! ”) ;
return fa l se ;

}

// ge t the min and max va l u e s f o r t h i s f e a t u r e
e r r = d c 1 3 9 4 f e a t u r e g e t b o u n d a r i e s (camera , cameraFeature ,
&min , &max) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not get f e a t u r e min/max ! ”) ;
return fa l se ;

}

// s e t the s l i d e r and sp inbox to t h i s range
s l i d e r−>setValue ((int) currentFeatureValue) ;
s l i d e r−>setRange ((int)min , (int)max) ;

60 Software

spinbox−>setValue ((int) currentFeatureValue) ;
spinbox−>setRange ((int)min , (int)max) ;

// check the mode here (auto/manual)
e r r = dc1394 feature get mode (camera , cameraFeature , &mode) ;
i f (e r r){

l ibdcErrorMessage (err , ”Could not get f e a t u r e mode s t a t u s ! ”) ;
return fa l se ;

}

i f (mode == DC1394 FEATURE MODE AUTO){
checkbox−>setChecked (true) ;

} else {
checkbox−>setChecked (fa l se) ;

}

// re turn t rue or f a l s e to enab l e the groupbox
return true ;
} else {
return fa l se ;

} }

When the user changes the value, either by means of the QSlider or the QSpinBox, a
slot corresponding to that feature is called and sets the value.

void FeatureDia log : : br ightnessChanged (int value){

dc1394e r r o r t e r r = DC1394 SUCCESS ;

e r r = d c 1 3 9 4 f e a t u r e s e t v a l u e (camera , DC1394 FEATURE BRIGHTNESS,
(u i n t 3 2 t) va lue) ;

i f (e r r){
l ibdcErrorMessage (err , ” Fa i l ed to s e t the new b r i g h t n e s s ! ”) ;
return ;

}
}

A similar slot is called when the user checks or unchecks the checkbox for auto/manual
mode.

void FeatureDia log : : brightnessModus (bool checked){

dc1394e r r o r t e r r = DC1394 SUCCESS ;

// s e t the f e a t u r e to manual or auto
i f (checked){

e r r = dc1394 f ea ture s e t mode (camera , DC1394 FEATURE BRIGHTNESS,
DC1394 FEATURE MODE AUTO) ;
basicTab−>b r i g h t n e s s S l i d e r−>setEnabled (fa l se) ;
basicTab−>brightnessSpinBox−>setEnabled (fa l se) ;

4.5 Classes 61

} else {
e r r = dc1394 f ea ture s e t mode (camera , DC1394 FEATURE BRIGHTNESS,
DC1394 FEATURE MODE MANUAL) ;
basicTab−>b r i g h t n e s s S l i d e r−>setEnabled (true) ;
basicTab−>brightnessSpinBox−>setEnabled (true) ;
}

i f (e r r){
l ibdcErrorMessage (err , ” Fa i l ed to s e t the b r i g h t n e s s to auto /manual ! ”) ;
return ;
}

}

A slightly different variations on these functions exist for the white balance feature
which uses extra parameters (U/V channel). As you can see we try to catch as many
errors as we can and display them in a messagebox using our own libdcErrorMessage()
function. This function basically shows a libdc1394 error code and our own message. In
the example code above errors normally never occur but the libdcErrorMessage() function
is also used in other parts of our program to catch more critical errors.

4.5.4 MultigrabDialog

Unlike the grab single image function in the Tools menu, which only captures one image,
this dialog has the ability to grab multiple images within a timed interval. The user can
set a timer interval in milliseconds6, seconds or minutes and the total number of images
he or she wants grabbed. The total acquisition time will be displayed. A folder must
also be selected (browse button) and a partial filename and file format. The filename
is concatenated automatically with the image number and additional zeros for alpha-
betical correctness. For example when grabbing 20 images in .png format they will be
saved to disk as dummy000.png, dummy001.png, dummy002.png, . . . , dummy018.png,
dummy019.png.

When the start button is pushed we first validate the user input and then initiate a
QTimer which sends out a signal at the specified interval. During grabbing all user input
will be disabled except for the stop and close button. The stop button immediately stops
the grabbing process, the close button only closes the dialog but grabbing will continue.

int t imeSca leFactor = 1 ;

i f (unitComboBox−>currentText () == ” sec ”) t imeSca leFactor = 1000 ;
i f (unitComboBox−>currentText () == ”min”) t imeSca leFactor = 60∗1000;

// s e t the i n t e r v a l t ime r (in m i l l i s e c ond s)
interva lTimer−>s e t I n t e r v a l ((i n t e rv a lL in e−>t ex t () . toUInt ())∗ t imeSca leFactor) ;

//and s t a r t the t imer
interva lTimer−>s t a r t () ;

6Intervals lower than roughly 100ms are not realistic due to the framerate of the camera and the
grabbing performance of our application.

62 Software

Figure 4.11: Grab images with regular intervals with the MultigrabDialog.

When all pictures are taken the timer is stopped with intervalTimer->stop(). Saving
the images to disk it not done by the MultigrabDialog class itself. It just sends a signal
to the Monitor class with the specified filename. The Monitor class will save the current
QImage in memory (the most recently grabbed camera frame) to disk via a simple Qt
save function.

void Monitor : : saveImage (QString f i l ename){

// i f format = 0 QImage w i l l guess accord ing to the f i l ename
//100 = max q u a l i t y !

q image−>save (f i l ename , 0 , 1 0 0) ;
}

In the next section we will discuss the recording of a full-motion movie by encoding
the camera stream directly to a movie file. However, when we are observing very slow
evolving processes this is generally not a good idea as most of the time nothing interesting
will happen. Also file size and consequently the hard drive space should be taken into
account. As we will use parts of ffmpeg in our C/C++ project (see: section 4.5.5) we
can also use ffmpeg as a stand-alone terminal application to combine separate images into
a movie file. These separate images can easily be acquired with our MultigrabDialog as
seen above.

f fmpeg −r [f ramerate] −b [b i t r a t e] − i [input] o u t p u t f i l e . mp4

When the framerate and the bitrate are left out the defaults are taken, respectively
25fps and 200kbits/s. The extension of the ouput file defines the codec used. In the
above example mpeg4 is used but ffmpeg supports a wide range of other codecs too.
For example when a series of images is taken and named sequentially as rgb000.png,
rgb001.png, rgb002.png, . . . we can combine them into a movie file with the following
command.

4.5 Classes 63

f fmpeg −r 10 −b 2000 − i rgb%03d . png rgb2000 . mp4

In which case the bitrate is the most prominent factor for quality after compression.
The width and height of the resulting movie will be the same as the input images unless
specified otherwise by an extra -s parameter 7.

4.5.5 RecordDialog

The RecordDialog class uses ffmpeg’s libavcodec to encode raw frames from the camera
to an mpeg1 stream. Ffmpeg is actually a platform independent command line tool for
audio/video conversion, libavcodec is a part of this project but can be used separately.
Together with libavformat (an audio/video mux/demux library) both are used in a variety
of open source multiplatform projects (e.g. ffdshow, MPlayer, Handbrake, . . .). More info
can be found on http://ffmpeg.mplayerhq.hu/ including the source code you will need to
compile our application.

Figure 4.12: Record an MPEG video with the RecordDialog class.

The ffmpeg mpeg encoder only takes YUV420 frames as valid input, so again we’ll
have to do some sort of conversion. The YUV420 format is a planar format which is
different from the regular image presentation of alternating (A)RGB or YUV pixel values
in one matrix. The image data is stored in three separate matrices but only one U and
one V pixel is stored for every four Y pixels. This means color information is reduced to
only 1/4th of a regular YUV or RGB image presentation, as can be seen in figure 4.13 .
YUV420 is commonly used in video compression because the reduced color information
and the separate planes contribute to better compression techniques. The slight loss of
color information is not really noticeable as the human eye is more sensitive to luminance
than to chrominance.

7See the ffmpeg online documentation for the different size options.

http://ffmpeg.mplayerhq.hu/

64 Software

Y

U

V

height

width width/2

height/2

Figure 4.13: Graphical presentation of a YUV420 planar frame.

There’s no real use in writing multiple conversion functions for YUV420 as we will al-
ways have to do two conversions anyway8. For this reason one function for ARGB32 to YUV420
transformations should suffice. Every Y pixel is copied but only the U and V pixels for
every even row and even column are copied. Although taking an average of the U/V
values for every four pixels would be better than always copying the information of the
fourth pixel, this would be computationally more expensive and does not yield noticeable
image quality gain.

void RecordDialog : : rgb32 to yuv420frame (u i n t 8 t ∗ src , AVFrame ∗dest ,
int width , int he ight)
{

register int i = ((width∗ he ight) << 2) − 1 ; //4 channe l s
register int j = (width∗ he ight) − 1 ; //1 channel
register int k = ((width /2)∗ (he ight /2)) − 1 ; // h a l f a channel
register int y , u , v ;
register int r , g , b , a ;

for (int m=0;m<he ight ;m++) {
for (int n=0;n<width ; n++) {

a = (u i n t 8 t) s r c [i −−]; // ignore a lpha channel
r = (u i n t 8 t) s r c [i −−];
g = (u i n t 8 t) s r c [i −−];
b = (u i n t 8 t) s r c [i −−];

// exec l i b dc1394 convers ion macro
RGB2YUV(r , g , b , y , u , v) ;

// Y − g ray s ca l e p lane − always copy t h i s
dest−>data [0] [j−−] = y ;

8One conversion to ARGB32 for Qt and another to YUV420 when actually recording.

4.5 Classes 65

// one Cr/Cb va lue per b l o c k o f four p i x e l s
i f (((m%2)==0)&&((n%2)==0)){

dest−>data [1] [k] = u ;
dest−>data [2] [k−−] = v ;

}
}

}
}

The AVFrame in which we save the resulting YUV420 image is a structure defined by
libavcodec, we allocate memory for it and define pointers to the different planes.

u i n t 8 t ∗yuv420 buf ;
AVFrame ∗yuv420 frame ;

// a l l o c a t e f fmpeg frame
yuv420 frame = a v c o d e c a l l o c f r a m e () ;

//make room fo r the yuv420 image
yuv420 buf = (u i n t 8 t ∗) mal loc ((c−>width ∗ c−>he ight ∗ 3) / 2) ;

// i n i t i a l i z e the p lanes in the YUV420 frame
yuv420 frame−>data [0] = yuv420 buf ;
yuv420 frame−>data [1] = yuv420 frame−>data [0] + (c−>width ∗ c−>he ight) ;
yuv420 frame−>data [2] = yuv420 frame−>data [1] + (c−>width ∗ c−>he ight) / 4 ;
yuv420 frame−> l i n e s i z e [0] = c−>width ;
yuv420 frame−> l i n e s i z e [1] = c−>width / 2 ;
yuv420 frame−> l i n e s i z e [2] = c−>width / 2 ;

The codec itself is set up in the following manner. We always record at a steady 30fps
as the mpeg1 standard does not support the same framerates as the camera. The quality
of the recorded movie clip is defined by the bitrate, which can be set by the user. We
allow three settings: low (1.25Mbit/s - VCD quality), medium (5Mbit/s - DVD quality)
and high (15Mbit/s - HDTV quality). If the chosen quality (bitrate) is too low to encode
a given frame size at it’s lowest quality avcodec will ignore the bitrate we set and pick a
new minimum one. The same counts for when a bitrate is chosen that’s way to large for
the selected frame size. So the bitrate value we set is more like a hint. Generally medium
quality is the best option without the file size getting to big.

AVCodec ∗ codec ;

AVCodecContext ∗c ;

// a l l o c a t e codec con t ex t
c = a v c o d e c a l l o c c o n t e x t () ;

// se tup the codec p r o p e r t i e s
/∗ average b i t r a t e , in bps ∗/
c−>b i t r a t e = b i t r a t e ;

66 Software

// r e s o l u t i o n must be a mu l t i p l e o f two
c−>width = width ;
c−>he ight = he ight ;
// fps , mpeg1 suppor t s 23.976 , 24 , 25 , 29.97 , 30 , 50 , 59.94 , and 60
c−>t ime base= (AVRational){1 , 30} ;
// emit one i n t r a frame every ten frames
// decreas ing gop −> c r ea t e s more o f a MJPEG encoder than an MPEG
c−>g o p s i z e = 10 ;
c−>max b frames =1;
//mpeg1 only t a k e s yuv420 frames
c−>pix fmt = PIX FMT YUV420P ;

//open the codec
i f (avcodec open (c , codec) < 0) {

errorMessage (”Could not open codec ! ”) ;
return ;

}

Finally to actually encode the image and write it to a movie file we need an output
buffer for the compressed image. We know it will generally not be bigger than the un-
compressed YUV420 frame so it’s sufficient to make the buffer just as big. When the
user has selected a framerate lower than 30 for the camera we will need to write extra
intermediate frames if we want the timebase to be correct. We do not allow recording of
a movie when the camera’s framerate is higher than 30fps. Performance wise, writing to
file is generally not a problem but encoding can be a real bottleneck.

o u t b u f s i z e = (c−>width ∗ c−>he ight ∗ 3) / 2 ; // i s s u f f i c i e n t l y l a r g e
outbuf = (u i n t 8 t ∗) mal loc (o u t b u f s i z e) ;

FILE ∗ f ;
f = fopen (f i l enameSt r ing , ”wb”) ;
i f (! f) {

errorMessage (”Could not open f i l e ! ”) ;
return ;

}

for (int i = 0 ; i < (30/ rea lFramerate) ; i ++){

// f l u s h the b u f f e r
f f l u s h (stdout) ;

// encode the image ,
// un f o r t una t e l y t h i s has to be done in the loop to minimal ize
//mpeg a r t i f a c t s , t r y i t ou t s i d e the loop and see f o r y o u r s e l f :−)
o u t s i z e = avcodec encode v ideo (c , outbuf , o u t b u f s i z e , yuv420 frame) ;
f w r i t e (outbuf , 1 , o u t s i z e , f) ;

}

4.5 Classes 67

As long as the out size value is not 0 we still have data coming from the MPEG
encoder. Therefore when recording is stopped we must continue to write these delayed
frames. To make it a valid MPEG file we also add a certain byte sequence to the end of
the file.

// wr i t e the de layed frames
while (o u t s i z e){

f f l u s h (stdout) ;
o u t s i z e = avcodec encode v ideo (c , outbuf , o u t b u f s i z e , NULL) ;
f w r i t e (outbuf , 1 , o u t s i z e , f) ;

}

//add sequence end code to have a v a l i d mpeg f i l e
outbuf [0] = 0x00 ;
outbuf [1] = 0x00 ;
outbuf [2] = 0x01 ;
outbuf [3] = 0xb7 ;
f w r i t e (outbuf , 1 , 4 , f) ;
f c l o s e (f) ; // c l o s e the f i l e

The above ffmpeg implementation is based on the apiexample.c example of libavcodec.
It is a pretty basic example of how to use ffmpeg encoding and decoding functions. If
you want to learn more about ffmpeg or want to implement more sophisticated codecs
(mpeg4, xvid, . . .) you’ll better have a look at the ffmpeg output example.c file. Both
can be found in the ffmpeg source package or on the official website (mentioned a few
pages back).

4.5.6 ReticlesDialog

For microscopic imaging applications we added the ReticlesDialog class (fig. 4.14). Ret-
icles or crosshairs can be used to align or center the image, but more importantly to do
measurements on a microscopic scale. This method is also commonly used on non-digital
microscope systems where the reticles are inlaid in the eyepieces.

Figure 4.14: The ReticlesDialog class.

68 Software

Three different kinds of reticles were implemented and 9 different colors are available
(important to stand out from the background) (fig. 4.15). The reticles are calibrated by
means of a stage micrometer (a glass plate with predefined engravings) and therefore we
must fit the reticle to the micrometer. For this reason the user can alter the size, the
number of divisions and the line thickness.

Figure 4.15: Reticle types and colors. Figure 4.16: Calibrating the micrometer
reticle.

An example of fitting the micrometer reticle to the real micrometer is shown in fig-
ure 4.16. When calibrated correctly we can roughly say that the red separators are 100µm
and 50µm apart. Of course these settings (and therefore measurements) are only valid
when the user uses the same objective for both the calibration and the inspection of the
specimen.

Another example, of a grid this time, is given in figure 4.17. We first calibrate the
grid on the smallest engravings in the stage micrometer (10µm apart) and then replace
the micrometer glass with a human blood sample. We can now estimate the average size
of a human bloodcell to be just under 10µm2 (fig. 4.18).

Figure 4.17: Calibrating the grid reticle,
lines 10µm apart.

Figure 4.18: Estimate the size of human
bloodcells.

4.5 Classes 69

The reticles are not drawn on the image itself but rather as an overlay. This is done
inside the same paint event as the drawing of the image and is very fast (no noticeable
delays with the reticles enabled). We will discuss the drawing functions we wrote to create
the dynamic reticles. First, by means of the image width and height (which is the same
size as the window viewfield) we can easily find the center of our drawing surface (X, Y).
Z is defined as a percentage of the width or height, depending on the type, and equals
the reticle’s size. We can then constraint the region in which we have to draw by four
coordinates.

(X - Z/2, Y)
(X + Z/2, Y)
(X, Y - Z/2)
(X, Y + Z/2)

Z

Z

(X, Y-Z/2)

width

height

(0, 0)

(X, Y)

(X, Y+Z/2)

(X+Z/2, Y)(X-Z/2, Y)

Figure 4.19: Drawing region for the reticles within the window viewfield.

Qt has a bunch of build-in drawing functions for its QPainter class. This class allows
us to paint inside any Qt widget. We use drawLine(), which draws a line between two
points in the 2D space, and drawEllipse() for an elliptic curve.

void drawLine (int x1 , int y1 , int x2 , int y2)
void drawEl l ip se (int x , int y , int width , int he ight)

With all this information the following drawing functions should be fairly comprehen-
sible.

//draws a g r i d in both x & y d i r e c t i o n s
void drawGrid (QPainter ∗ pa in t e r , f loat s i z e , int div , QColor co lo r ,
int th i cknes s , int width , int he ight){

70 Software

// de f i n e the drawing pen
QPen myPen(c o l o r) ;
myPen . setWidth (t h i c k n e s s) ;
pa inter−>setPen (myPen) ;

int X = width /2 ;
int Y = he ight /2 ;
// the g r i d i s a square so l im i t i t a t the v i e w f i e l d h e i g h t
int Z = (int) (he ight ∗(s i z e / 1 0 0)) ;

// Hor i zon ta l l i n e s
for (int i = 0 ; i <= div ; i ++){

painter−>drawLine (X−(Z/2) , Y−(Z/2)+(i ∗(Z/ div)) , X+(Z/2) ,
Y−(Z/2)+(i ∗(Z/ div))) ;

}

// Ve r t i c a l l i n e s
for (int i = 0 ; i <= div ; i ++){

painter−>drawLine (X−(Z/2)+(i ∗(Z/ div)) , Y−(Z/2) ,
X−(Z/2)+(i ∗(Z/ div)) , Y+(Z / 2)) ;

}
}

//draws a c ro s s ha i r d i s c
void drawCrossHair (QPainter ∗ pa in t e r , f loat s i z e , int div , QColor co lo r ,
int th i cknes s , int width , int he ight){

// de f i n e the drawing pen
QPen myPen(c o l o r) ;
myPen . setWidth (t h i c k n e s s) ;
pa inter−>setPen (myPen) ;

int X = width /2 ;
int Y = he ight /2 ;
int Z = (int) (he ight ∗(s i z e / 1 0 0)) ;
int D = Z/ div ;

// v e r t i c a l l i n e
painter−>drawLine (X, Y−(Z/2) , X, Y+(Z / 2)) ;
// ho r i z on t a l l i n e
painter−>drawLine (X−(Z/2) , Y, X+(Z/2) , Y) ;

// h e i g h t < width so l im i t the c i r c l e t h e r e
for (int i = 0 ; i <= div ; i ++){

painter−>drawEl l ip se (X−(Z/2) , Y−(Z/2) , Z , Z) ;
Z = Z−D;

}
}

4.5 Classes 71

//draws a micrometer
void drawMicrometer (QPainter ∗ pa in t e r , f loat s i z e , int div , QColor co lo r ,
int th i cknes s , int width , int he ight){

// de f i n e the drawing pen
QPen myPen(c o l o r) ;
myPen . setWidth (t h i c k n e s s) ;
pa inter−>setPen (myPen) ;

int X = width /2 ;
int Y = he ight /2 ;
// the max s i z e o f the micrometer r e t i c l e i s a percentage
// o f the width because i t on ly expands h o r i z o n t a l l y
int Z = (int) (width ∗(s i z e / 1 0 0)) ;
int D = he ight /10 ;
bool t o g g l e = true ;

// ho r i z on t a l l i n e
painter−>drawLine (X−(Z/2) , Y, X+(Z/2) , Y) ;

// Ve r t i c a l l i n e s , a l t e r n a t i o n long / shor t
for (int i = 0 ; i <= div ; i ++){

i f (t o g g l e){
painter−>drawLine (X−(Z/2)+(i ∗(Z/ div)) , Y−D,
X−(Z/2)+(i ∗(Z/ div)) , Y+D) ;
t o g g l e = ! t o g g l e ;

} else {
painter−>drawLine (X−(Z/2)+(i ∗(Z/ div)) , Y−(D/2) ,
X−(Z/2)+(i ∗(Z/ div)) , Y+(D/ 2)) ;
t o g g l e = ! t o g g l e ;

}
}

}

4.5.7 OptionsDialog

The program options dialog is a very simple dialog and only has four features (fig. 4.20).

The first feature is the negative feature which basically just turns the camera stream
into it’s photo negative equivalent. This is a very easy and rather fast operation in Qt.

i f (negat ive) q image−>i n v e r t P i x e l s () ;

As you can see this operation is performed on the QImage and not on the actual raw
image data associated with it (see: section 4.5.8). This is a small limitation as you will
not get the inverted image when recording a movie since the recorder uses the original
ARGB32 raw image as input. On the other hand, saving an image in negative is possible
because the save() function is called on the QImage.

72 Software

The second feature is the frame limiter feature. As we explained before one of the
bottlenecks in our program can be drawing the fast sequence of images to the screen. If
you were to expand our program with some image processing functionality you will not
have a lot of CPU cycles left, especially at the higher resolutions. For this we provide
functionality to only draw one in every x frames. This features is also useful when
recording movies as the mpeg encoding is quite a costly operation and more free cpu
time means less missed frames. A small improvement can be seen when comparing the
CPU loads for 640x480 in YUV411 @ 30fps in figures 4.21 and 4.22 (only one in every
100 frames is actually drawn to the screen). These graphs also show us that the main
bottleneck is situated in the video capture and conversion functions.

Figure 4.20: The OptionDialog class provides general program options.

Figure 4.21: Duo Core CPU load with
frame limiter disabled.

Figure 4.22: Duo Core CPU load with
frame limiter enabled.

4.5 Classes 73

The third option is a scaling option. Initially this feature was added for the case
when we capture resolutions that are too big to show on a small screen (e.g. 1600x1200).
The feature only scales the image shown on screen and not the ones being grabbed or
recorded. Four scaling factors can be chosen: small (320x240), medium (640x480), large
(800x600) and huge (1024x768). Scaling down a big resolution shows a similar CPU graph
improvement as seen with the frame limiter option, scaling up has of course a negative
effect.

As explained in chapter 3, in exceptional cases, it can be necessary to reset the
FireWire bus. The reset FireWire bus button also resets the whole program (closes
the current instance and opens a new one). There’s absolutely no harm in clicking this
button, even when reset is not needed.

4.5.8 Monitor

Finally we get to the most important widget of our program. The Monitor widget is the
central widget in the MainWindow. It receives signals from all the dialogs and reacts on
them. It’s main task is to initiate capture and poll the ring buffer for frames at regular
intervals to ensure no missed frames. It also evokes the conversions to RGB32, loads the
resulting data into a QImage and draws it to the screen. When selected by the user it will
also call the reticle drawing functions, count the frames for the frame limiter option or
convert the images to their negative. When all the capture information is received from
the user dialogs the startCamera() function is called to initiate capture.

bool Monitor : : startCamera (){

dc1394e r r o r t e r r = DC1394 SUCCESS ;

// s e t i s o speed
e r r = d c 1 3 9 4 v i d e o s e t i s o s p e e d (camera , currentISOSpeed) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t i s o speed ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

// s e t the camera mode
e r r = dc1394 v ideo set mode (camera , currentMode) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t v ideo mode ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

/∗ format 7 s p e c i f i c s e t t i n g s HERE! ∗/
i f (format7Mode){

74 Software

// s e t the format 7 image po s i t i o n
e r r = dc 13 94 f o rm at 7 s e t im ag e po s i t i on (camera , currentMode ,
currentFormat7Mode . pos x , currentFormat7Mode . pos y) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t format 7 image p o s i t i o n ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

// s e t the format 7 frame s i z e
e r r = d c 1 3 9 4 f o r m a t 7 s e t i m a g e s i z e (camera , currentMode ,
currentFormat7Mode . s i z e x , currentFormat7Mode . s i z e y) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t format 7 image s i z e ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

// s e t the s e l e c t e d format 7 co l o r coding
e r r = d c 1 3 9 4 f o r m a t 7 s e t c o l o r c o d i n g (camera , currentMode ,
currentFormat7Mode . c o l o r c o d i n g) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t format 7 c o l o r coding ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

//Get the recommended by t e per packe t
u i n t 3 2 t packet byte s ;
dc1394 format7 get recommended packet s i ze (camera , currentMode ,
&packet byte s) ;

// s e t t h i s packe t s i z e
e r r = d c 1 3 9 4 f o r m a t 7 s e t p a c k e t s i z e (camera , currentMode ,
packet byte s) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t format 7 packet s i z e ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

/∗end o f format7 s e t t i n g s ∗/

} else {
// i f not format 7 a framerate shou ld be s e t !

4.5 Classes 75

e r r = d c 1 3 9 4 v i d e o s e t f r a m e r a t e (camera , currentFramerate) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s e t f ramerate ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}
}
// capture se tup and s i z e o f r i n g b u f f e r
e r r = dc1394 capture se tup (camera , 4 , DC1394 CAPTURE FLAGS DEFAULT) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not setup camera ! . ”) ;
c l e anup and ex i t () ;
return fa l se ;

}

// s t a r t the t ransmiss ion
e r r = d c 1 3 9 4 v i d e o s e t t r a n s m i s s i o n (camera , DC1394 ON) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not s t a r t camera i s o t ransmi s s i on ! ”) ;
c l e anup and ex i t () ;
return fa l se ;

}
return true ;

}

The camera is now filling up the ring buffer with frames. Because we know the exact
framerate9 we can calculate the time in which a new frame is expected. We must also
provide a buffer for the converted image. This must be done before every new capture as
the frame size could have been changed by the settings.

t i m e r I n t e r v a l = (int)(1000/ f ramerate) ; // in m i l l i s e c ond s

// ge t the width and he i g h t o f the used v ideo mode
dc1394 get image s i z e f rom v ideo mode (camera , currentMode ,
&width , &he ight) ;

// a l l o c a t e 4 channel image b u f f e r f o r the f u t u r e convers ion here
//and only once −> prevent memory l e a k s
rgb32 image = (u i n t 8 t ∗) mal loc (4∗width∗ he ight) ;

fp s t imer−>s t a r t (t i m e r I n t e r v a l) ;

Every time the interval is reached the timer sends a signal. This signal is connected
to the grabFrame() slot which is then evoked. The function dequeues a frame and checks
whether or not a NULL pointer was returned (because we POLL, see: chapter 3). If
the frame is valid it is ours to use until we enqueue it again. We load the QImage as a

9Except when format 7 is used, in that case the framerate is set to 30.

76 Software

QImage::Format RGB32 format, other possibilities are the QImage::Format ARGB32 and
QImage::Format ARGB32 Premultiplied formats. We use the regular one as we don’t use
the alpha layer and this is supposed to be faster. Take note that the QImage is associated
with the rgb32 image buffer. This means that the QImage data is actually the same data
as in the buffer, so the buffer cannot be freed before the QImage is destroyed. If the frame
limiter option is not set then the frameLimit is set to 0. This ensures that the repaint
event is called every time.

void Monitor : : grabFrame (){

dc1394e r r o r t e r r = DC1394 SUCCESS ;

// dequeue the r ing b u f f e r
e r r = dc1394 capture dequeue (camera , DC1394 CAPTURE POLICY POLL,
&frame) ;

i f (e r r){
l ibdcErrorMessage (err , ”Could not capture a frame ! ”) ;
c l e anup and ex i t () ;
return ;

}

// check i f a v a l i d frame was p o l l e d
i f (! frame){

//no need to redraw , no new frame anyways
return ;

} else {
// conver t s frame−>image to rgb32 image
i f (frameToImage32 (frame , rgb32 image) != DC1394 SUCCESS){

qDebug () << ” e r r o r with conver s i on ” ;
return ;

}

// i f we are record ing emit a s i g n a l to the RecordDialog
i f (i sRecord ing) emit writeFrame (rgb32 image) ;

// des t roy the prev ious q image −> prevent memory l e a k s
q image−>˜QImage () ;
// re l oad a new QImage wi th the new data
q image = new QImage(rgb32 image , width , height ,
QImage : : Format RGB32) ;

i f (q image−>i s N u l l ()){
qDebug () << ” load ing QImage f a i l e d ” ;
return ;

} ;

// next f r e e the frame to make room fo r a new one
dc1394 capture enqueue (camera , frame) ;

4.5 Classes 77

// i f the user wants a nega t i v e image do the inv e r s i on
i f (negat ive) q image−>i n v e r t P i x e l s () ;

// frame l im i t e r i f enab led in the Opt ionsDia log
i f (frameCounter == frameLimit){

frameCounter = 0 ;
//manually envoke the pa in t event
this−>r epa in t () ;

} else {
frameCounter++;

}
}

}

The function frameToImage32() gets the color coding from the frame itself and then
does the proper conversion by calling the specific conversion functions. These functions
are defined in myconv.h. As you can see below the color modes RGB16/MONO16 are
not tested but they should work. RAW16 is not supported yet.

dc1394e r r o r t Monitor : : frameToImage32 (dc1394v ideo f rame t ∗ frame ,
u i n t 8 t ∗ rgb32 image){

switch (frame−>c o l o r c o d i n g){
case DC1394 COLOR CODING RGB16 :

//WARNING: RGB16 = EXPERIMENTAL = NOT TESTED!
RGB16 to RGB32(frame−>image , rgb32 image , width , height ,
frame−>data depth) ;
break ;

case DC1394 COLOR CODING YUV444 :
YUV444 to RGB32(frame−>image , rgb32 image , width , he ight) ;
break ;

case DC1394 COLOR CODING YUV422 :
YUV422 to RGB32(frame−>image , rgb32 image , width , height ,
frame−>yuv byte order) ;
break ;

case DC1394 COLOR CODING YUV411 :
YUV411 to RGB32(frame−>image , rgb32 image , width , he ight) ;
break ;

case DC1394 COLOR CODING MONO8:
case DC1394 COLOR CODING RAW8:

MONO8 to RGB32(frame−>image , rgb32 image , width , he ight) ;
break ;

case DC1394 COLOR CODING MONO16:
//WARNING: MONO16 = EXPERIMENTAL = NOT TESTED!
MONO16 to RGB32(frame−>image , rgb32 image , width , height ,
frame−>data depth) ;
break ;

case DC1394 COLOR CODING RAW16:
qDebug () << ”RAW16 not supported yet ” ;
return DC1394 FAILURE ;

78 Software

break ;
case DC1394 COLOR CODING RGB8:

RGB24 to RGB32(frame−>image , rgb32 image , width , he ight) ;
break ;

default :
qDebug () << ” This c o l o r coding i s not supported (yet) ” ;
return DC1394 FAILURE ;

}

return DC1394 SUCCESS ;
}

Next we’ll take a look at the paintEvent() where the actual drawing happens. Except
from drawing the image (scaled or not) and the reticles we also notify the user if we are
currently recording and/or scaling. This is done by putting some text in the bottom left
corner of the Monitor.

void Monitor : : paintEvent (QPaintEvent ∗){ // here we draw !

// pa in t e r s shou ld be l o c a l to the paintEvent !
QPainter pa in t e r (this) ;

int w = 0 , h = 0 ;

// s e t the proper s i z e
i f (i s S c a l e d){

w = scaledWidth ;
h = sca l edHe ight ;

} else {
w = width ;
h = he ight ;

}

// de f i n e the v i e w f i e l d
QRectF t a r g e t (0 . 0 , 0 . 0 , w, h) ;

// f i n a l l y , draw the image onto the widge t
i f (i s S c a l e d){

QImage sca ledImage ;
sca ledImage = q image−>s c a l e d (scaledWidth , sca ledHeight ,
Qt : : IgnoreAspectRatio , Qt : : FastTransformation) ;
pa in t e r . drawImage (target , sca ledImage) ;

} else {
pa in t e r . drawImage (target , ∗q image) ;

}

// determine i f we shou ld ove r l ay a r e t i c l e
// de f ined in r e t i c l e s . h and r e t i c l e s . cpp
switch (c u r r e n t S t y l e){

case NONE:

4.5 Classes 79

break ;
case GRID:

drawGrid(&painter , cu r r entS i z e , currentDiv ,
currentColor , currentThickness , w, h) ;
break ;

case CROSSHAIR:
drawCrossHair(&painter , cu r r entS i z e , currentDiv ,
currentColor , currentThickness , w, h) ;
break ;

case MICROMETER:
drawMicrometer(&painter , cu r r entS i z e , currentDiv ,
currentColor , currentThickness , w, h) ;
break ;

default :
break ;

}

// i f we are record ing or s ca l i n g , n o t i f y the user
i f (i sRecord ing && ! i s S c a l e d){

pa in t e r . setPen (Qt : : red) ;
pa in t e r . drawText (10 , h−10, ” r e co rd ing . . . ”) ;

}

i f (i s S c a l e d && ! i sRecord ing){
pa in t e r . setPen (Qt : : red) ;
pa in t e r . drawText (10 , h−10, ” s c a l e d ”) ;

}

i f (i s S c a l e d && isRecord ing){
pa in t e r . setPen (Qt : : red) ;
pa in t e r . drawText (10 , h−10, ” s c a l e d & reco rd ing . . . ”) ;

}
}

You might have noticed the cleanup and exit() function in the error handling parts
of the code. This is an important function as it must stop capture in a clean way. It
determines in what state the program is in and depending on this state it frees certain
buffers and pointers in a particular order.

void Monitor : : c l e anup and ex i t (){

i f (i sCaptur ing){
f p s t imer−>stop () ;
d c 1 3 9 4 v i d e o s e t t r a n s m i s s i o n (camera , DC1394 OFF) ;
dc1394 capture s top (camera) ;
// f r e e the q image b e f o r e we f r e e the corresponding rgb32 image
q image−>˜QImage () ;
q image = new QImage(” : / images /nocamera . png”) ;
f r e e (rgb32 image) ;
i sCaptur ing = fa l se ;

80 Software

}

i f (i s I n i t i a l i z e d){
i f (r e s e t){

qDebug () << ” Rese t t ing bus . . . ” ;
d c1394 r e s e t bus (camera) ;

}
dc1394 camera f ree (camera) ;
d c1394 f r e e (d) ;
i s I n i t i a l i z e d = fa l se ;

}

qDebug () << ”camera s u c c e s s f u l l y f r e e d ” ;
}

In the tools menu you can pick the grab single image function. This opens a standard
Qt file dialog and is therefore not one of our own self-created widgets. The standard pad
is the location from where our program was started. By altering the file extension you
can determine the file format. When the save button is clicked a signal is sent to the
Monitor to save the most recently grabbed image to disk (see: section 4.5.4). There’s
a slight difference between the file dialog on Linux/Mac because it takes over the OS’s
native layout and looks (fig. 4.24 and fig. 4.23).

void MainWindow : : grabImage (){

QString f i leName = QFileDia log : : getSaveFileName (this ,
t r (”Save image to d i sk ”) , ” u n t i t l e d . png” ,
t r (” Images (∗ . png ∗ . jpg ∗ . jpeg ∗ .bmp ∗ . t i f f) ”)) ;

i f (! f i leName . isEmpty ()) emit s ignalSaveImage (f i leName) ;
}

4.5 Classes 81

Figure 4.23: The file dialog on Mac os X.

Figure 4.24: The file dialog on Linux.

82 Software

Chapter 5

Conclusion

Although optical microscope theory is not an easy subject we’ve succeeded in acquiring
high quality photomicrographs with a fairly old microscope. This also tells a lot about
the build quality of such an expensive optical system, which is still worth a consider-
able amount of money today. We reinstate it by modernizing it with digital cameras
and accompanying software so it can be used for future computer vision projects on the
microscopic scale. As for the software itself, it aims to be as platform-independent as
possible and is compatible with all IIDC FireWire cameras making it useful for other
industrial/scientific projects as well.

This all sounds very nice but of course there is always some room left for improvement.
First of all the color format transformation functions should be optimized as they consume
a lot of CPU time especially at higher resolutions and framerates. This can probably be
accomplished by using SSE instructions or even GPU specific features but my knowledge
concerning these subjects is limited. Furthermore a faster way to draw the sequences of
images to the screen in Qt could also be considered. Although we already have some
hardware acceleration by drawing in a QGLWidget instead of a regular QWidget there
might be better alternatives. Qt supports openGL on all platforms so a direct openGL
implementation should be possible. We should note that drawing the images is only
a substantial bottleneck on slower machines. On newer machines it can be neglected
so improvement here might not be needed. The conversion functions remain the most
noticeable bottleneck even on fast machines. Luckily GUI responsiveness is never really
a problem as Qt seems to handle this nicely. As for the MPEG1 encoder taken from
the ffmpeg project we can assume this to be reasonably optimized as ffmpeg is a mature
project used in many open source video applications. The software functionality itself
can of course also be extended as the source code is available on the CD accompanying
this book. To keep the software up-to-date changes in the libdc1394 project should be
followed up regularly as this is a highly active library. Full compliance with the latest
version should also ensure an easy transaction when the Windows port is finally released.

I’m pretty sure my software will be put to good use and if you are using it or are
altering the source code you can always contact me for questions via email

j leemans@hotmail.com

I’ll do my very best to answer your questions.

84 Conclusion

Bibliography

[1] MICHAEL W. DAVIDSON, MORTIMER ABRAMOWITZ, Optical Microscopy,
http://micro.magnet.fsu.edu/primer/pdfs/microscopy.pdf, 1999, 41 pages.

[2] MORTIMER ABRAMOWITZ, Mircoscope Basics and Beyond,
http://micro.magnet.fsu.edu/primer/pdfs/basicsandbeyond.pdf, 2003, 50 pages.

[3] MICHAEL W. DAVIDSON, Molecular Expressions, http://microscopy.fsu.edu/,
Florida State University Research Foundation.

[4] VARIOUS AUTHORS, MicroscopyU, http://www.microscopyu.com/, Nikon Inc.,
Florida State University and Molecular Expressions.

[5] VARIOUS AUTHORS, http://hyperphysics.phy-astr.gsu.edu/hbase/vision/, Geor-
gia State University.

[6] ADOBE, The Physiology of Human Vision,
http://dba.med.sc.edu/price/irf/Adobe tg/color/vision.html.

[7] A. E. CONRADY, Applied Optics and Optical Design, part two, Dover Publications,
1960, 841 pages.

[8] PAUL SUETENS, Fundamentals of Medical Imaging, 4th printing, Cambridge
University Press, 2002, 280 pages.

[9] VARIOUS AUTHORS, IIDC 1394-based Digital Camera Specification, version 1.31,
1394 Trade Association, 2004, 85 pages.

[10] VARIOUS AUTHORS, GenICam Standard: Generic Interface for Cameras, Version
1.0, European Machine Vision Association, 2007, 46 pages.

[11] BRIAN W. KERNIGHAN, DENNIS M. RITCHIE, The C Programming Language,
second edition, 35th printing, Prentice Hall PTR, 1988, 272 pages.

[12] HERBERT SCHILDT, C++: The Complete Reference, fourth edition, McGraw-
Hill/Osborne, 2003, 1023 pages.

[13] JASMIN BLANCHETTE, MARK SUMMERFIELD, C++ GUI Programming with
Qt 4, 3rd printing, Prentice Hall/Trolltech Press, 2006, 537 pages.

[14] TROLLTECH, Qt developer documentation, http://doc.trolltech.com/.

http://micro.magnet.fsu.edu/primer/pdfs/microscopy.pdf
http://micro.magnet.fsu.edu/primer/pdfs/basicsandbeyond.pdf
http://microscopy.fsu.edu/
http://www.microscopyu.com/
http://hyperphysics.phy-astr.gsu.edu/hbase/vision/
http://dba.med.sc.edu/price/irf/Adobe_tg/color/vision.html
http://doc.trolltech.com/

86 BIBLIOGRAPHY

Appendix A

IIDC Video Formats & Modes

TA Document 2003017, February 12, 2004 IIDC 1394-based Digital Camera Specification Ver.1.31

4.2.2 Inquiry register for video mode

Offset Name Field Bit Description
180h V_MODE_INQ_0 Mode_0 [0] 160 X 120 YUV(4:4:4) Mode (24bit/pixel)

(Format_0) Mode_1 [1] 320 X 240 YUV(4:2:2) Mode (16bit/pixel)
Mode_2 [2] 640 X 480 YUV(4:1:1) Mode (12bit/pixel)
Mode_3 [3] 640 X 480 YUV(4:2:2) Mode (16bit/pixel)
Mode_4 [4] 640 X 480 RGB Mode (24bit/pixel)
Mode_5 [5] 640 X 480 Y (Mono) Mode (8bit/pixel)
Mode_6 [6] 640 X 480 Y (Mono16) Mode (16bit/pixel)
Mode_x [7] Reserved for another Mode

- [8..31] Reserved
184h V_MODE_INQ_1 Mode_0 [0] 800 X 600 YUV(4:2:2) Mode (16bit/pixel)

(Format_1) Mode_1 [1] 800 X 600 RGB Mode (24bit/pixel)
Mode_2 [2] 800 X 600 Y (Mono) Mode (8bit/pixel)
Mode_3 [3] 1024 X 768 YUV(4:2:2) Mode (16bit/pixel)
Mode_4 [4] 1024 X 768 RGB Mode (24bit/pixel)
Mode_5 [5] 1024 X 768 Y (Mono) Mode (8bit/pixel)
Mode_6 [6] 800 X 600 Y (Mono16) Mode (16bit/pixel)
Mode_7 [7] 1024 X 768 Y (Mono16) Mode (16bit/pixel)

- [8..31] Reserved
188h V_MODE_INQ_2 Mode_0 [0] 1280 X 960 YUV(4:2:2) Mode (16bit/pixel)

(Format_2) Mode_1 [1] 1280 X 960 RGB Mode (24bit/pixel)
Mode_2 [2] 1280 X 960 Y (Mono) Mode (8bit/pixel)
Mode_3 [3] 1600 X 1200 YUV(4:2:2) Mode (16bit/pixel)
Mode_4 [4] 1600 X 1200 RGB Mode (24bit/pixel)
Mode_5 [5] 1600 X 1200 Y (Mono) Mode (8bit/pixel)
Mode_6 [6] 1280 X 960 Y (Mono16) Mode (16bit/pixel)
Mode_7 [7] 1600X 1200 Y (Mono16) Mode (16bit/pixel)

- [8..31] Reserved
18Ch

:
197h

Reserved for other V_MODE_INQ_x for Format_x.

198h V_MODE_INQ_6 Mode_0 [0] Exif format
(Format_6) Mode_x [1..7] Reserved for another Mode

- [8..31] Reserved
19Ch V_MODE_INQ_7 Mode_0 [0] Format_7 Mode_0

(Format_7) Mode_1 [1] Format_7 Mode_1
Mode_2 [2] Format_7 Mode_2
Mode_3 [3] Format_7 Mode_3
Mode_4 [4] Format_7 Mode_4
Mode_5 [5] Format_7 Mode_5
Mode_6 [6] Format_7 Mode_6
Mode_7 [7] Format_7 Mode_7

- [8..31] Reserved

0-7 8-15 16-23 24-31
V_MODE_INQ Reserved

Initial values System dependent
Read values System dependent. Same value to Initial value
Write effect Ignored

 Copyright � 2004, 1394 Trade Association. All rights reserved. Page 13

Appendix B

Philips 7023 Datasheet

7023 100W GY6.35
12V 1CT
Product family description
Low-voltage, flat-filament quartz halogen
lamps

Product Features
• Small bulb shape and high luminous intensity
• Lamps with prefocus base have a better-defined position of the filament in the system, allowing lamp replacement

without adjustment
• XHP lamps are optimised for maximum light output by using xenon filling gas within IEC limits for these types

Product Benefits
• Specially suited for use in compact, efficient projection systems
• Constant, high light output during lifetime
• Distortion-free quartz bulb for optimal beam performance

Application
• Studio, film, theatre and disco lighting
• Slide, overhead, profile and 8/16 mm film projectors
• Microfilm readers and reader printers
• Dental lights
• Microscopes and endoscopes

Product data
Order code 409812 50
Full product code 871150040981250
Full product name 7023 100W GY6.35 12V 1CT
Order product name 7023 100W GY6.35 12V 1CT/10X10F
Packing type 1 Carton
Pieces per pack 1
Packing configuration 10X10F
Packs per outerbox 100
Bar code on pack - EAN1 8711500409812
Bar code on intermediate packing - EAN2 8711500420015
Bar code on outerbox - EAN3 8711500423269

1

31/3/2008

Product data
Logistic code(s) - 12NC 9238 700 17103
ILCOS code
Net weight per piece 2.640 GR
Successor order code
Philips Code 7023
ANSI Code FCR
LIF Code A1/215
Cap-Base GY6.35
Bulb Material Quartz-UV Open
Filament Shape Flat
Burning Position s90
Main Application Projection
Life to 50% failures 50 hr
Rated Lamp Wattage 100W
Voltage 12V
Color Rendering Index 100 Ra8
Lamp Luminous Flux 3400 Lm
Filament Dimensions (WxH) [mm] 4.2x2.3

XHMPSEFF GY6.35

Cap-Base GY6.35

2

31/3/2008

Burning Position s90

XHMPSEFF G6.35/GY6.35

C D L L L P P P

Full
pro
duc

t
na
me

Max Max Min No
m Max Min No

m Max

702
3 44 11.

5
29.
75 30 30.

25
1.2
0

1.2
5

1.3
0

3

31/3/2008

C D L L L P P P

Full
pro
duc

t
na
me

Max Max Min No
m Max Min No

m Max

100
W

GY6
.35
12V
1CT

4

31/3/2008

94 Philips 7023 Datasheet

Appendix C

Conversion functions to (A)RGB32

/*
 * myconv.h - headerfile - different types of conversion functions
 * Leemans Jasper
 * De Nayer Instituut / Visics Research Group / 2007-2008
 */

#ifndef MYCONV_H //ensure header file is only processed once
#define MYCONV_H

//Qt includes
#include <QtGui>

///libdc1394 includes
#include <dc1394/dc1394.h>

//to rgb32
void RGB24_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height);
void MONO8_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height);
void YUV444_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height);
void YUV411_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height);
void YUV422_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height, uint32_t byte_order);
void RGB16_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height, uint32_t bits);
void MONO16_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height, uint32_t bits);

#endif

/*
 * myconv.cpp - different types of conversion functions
 * Leemans Jasper
 * De Nayer Instituut / Visics Research Group / 2007-2008
 */

#include "myconv.h"

/**
 *
 * CONVERSION FUNCTIONS TO RGB 32bit QImage 0xffRRGGBB/0xAARRGGBB
 *
 **/

void RGB24_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height){

register int i = (width*height) + ((width*height) << 1) - 1; //start at the b
plane of the source
register int j = ((width*height) << 2) - 1; //4 channels
register int r, g, b, alpha = 255; //variables for switching, opacity 100%

while (j >= 0) {

b = (uint8_t) src[i--]; //blue
g = (uint8_t) src[i--]; //green
r = (uint8_t) src[i--]; //red

dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE
}

}

//This is the mac version
void MONO8_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height){

register int i = (width*height) - 1;
register int j = ((width*height) << 2) - 1; //4 channels
register int y, alpha = 255;

while (i >= 0) {
y = (uint8_t) src[i--];
dest[j--] = alpha;
dest[j--] = y; //RED
dest[j--] = y; //GREEN
dest[j--] = y; //BLUE
}

}

void YUV444_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,

uint32_t width, uint32_t height){

register int i = (width*height) + ((width*height) << 1) - 1;
register int j = ((width*height) << 2) - 1; //4 channels
register int y, u, v;
register int r, g, b, alpha = 255;

while (i >= 0) {
v = (uint8_t) src[i--] - 128;
y = (uint8_t) src[i--];
u = (uint8_t) src[i--] - 128;
YUV2RGB (y, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE

}
}

void YUV411_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height){

register int i = (width*height) + ((width*height) >> 1) - 1;
register int j = ((width*height) << 2) - 1; //4 channels
register int y0, y1, y2, y3, u, v;
register int r, g, b, alpha = 255;

while (i >= 0) {
y3 = (uint8_t) src[i--];
y2 = (uint8_t) src[i--];
v = (uint8_t) src[i--] - 128;
y1 = (uint8_t) src[i--];
y0 = (uint8_t) src[i--];
u = (uint8_t) src[i--] - 128;
YUV2RGB (y3, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE
YUV2RGB (y2, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE
YUV2RGB (y1, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE
YUV2RGB (y0, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN

dest[j--] = b; //BLUE
}

}

void YUV422_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height, uint32_t byte_order){

register int i = ((width*height) << 1) - 1;
register int j = ((width*height) << 2) - 1; //4 channels
register int y0, y1, u, v;
register int r, g, b, alpha = 255;

switch (byte_order) {
case DC1394_BYTE_ORDER_YUYV:

while (i >= 0) {
v = (uint8_t) src[i--] -128;
y1 = (uint8_t) src[i--];
u = (uint8_t) src[i--] -128;
y0 = (uint8_t) src[i--];
YUV2RGB (y1, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE
YUV2RGB (y0, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE

}
break;

case DC1394_BYTE_ORDER_UYVY:
while (i >= 0) {

y1 = (uint8_t) src[i--];
v = (uint8_t) src[i--] - 128;
y0 = (uint8_t) src[i--];
u = (uint8_t) src[i--] - 128;
YUV2RGB (y1, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE
YUV2RGB (y0, u, v, r, g, b);
dest[j--] = alpha;
dest[j--] = r; //RED
dest[j--] = g; //GREEN
dest[j--] = b; //BLUE

}
break;

default:
fprintf(stderr,"Invalid overlay byte order\n");
break;

}
}

/**
 *
 * 16BIT functions are experimental = not tested but should work!
 *
 **/

void RGB16_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height, uint32_t bits){

register int i = (((width*height) + ((width*height) << 1)) << 1) - 1;
register int j = ((width*height) << 2) - 1;
register int r, g, b, alpha = 255;

while (i >= 0) {
b = src[i--];
b = (b + (src[i--]<<8))>>(bits-8);
g = src[i--];
g = (g + (src[i--]<<8))>>(bits-8);
r = src[i--];
r = (r + (src[i--]<<8))>>(bits-8);
dest[j--] = alpha;
dest[j--] = r;
dest[j--] = g;
dest[j--] = b;
}

}

void MONO16_to_RGB32(uint8_t *restrict src, uint8_t *restrict dest,
uint32_t width, uint32_t height, uint32_t bits){

register int i = ((width*height) << 1) - 1;
register int j = ((width*height) << 2) - 1;
register int y, alpha = 255;

while (i > 0) {
y = src[i--];
y = (y + (src[i--]<<8))>>(bits-8);
dest[j--] = alpha;
dest[j--] = y;
dest[j--] = y;
dest[j--] = y;

}
}

	Introduction to optical microscopy
	Human eye perception
	Principles of magnification
	Image Formation
	Aperture, Airy discs and resolution
	Eyepieces and Camera Adapters
	Conjugate planes
	Substage Condenser and Diaphragms
	Depth of Field
	Filters

	Microscope objectives
	Infinity corrected optics
	Spherical Abberation
	Chromatic Aberration
	Other types of aberrations
	Types of objectives
	Field Curvature
	Example and Color Codes

	Illumination techniques
	Köhler illumination
	Darkfield illumination

	Leitz Ergolux: a short manual
	Lab Setup
	Cameras
	Lamp and lamp power source
	Camera adapter and mounting the camera

	Focussing on a sample
	Revolver and objectives
	Filters
	Illumination

	Image Acquisition
	IIDC
	Video Formats
	Image Processing Libraries
	Libdc1394
	Capture setup
	Ring buffer
	Cleaning up
	libdc1394 2.0.1 functions

	Software
	About Qt
	Application outline
	Loading an image
	Signals between Widgets
	Classes
	SelectDialog
	CaptureDialog
	FeatureDialog
	MultigrabDialog
	RecordDialog
	ReticlesDialog
	OptionsDialog
	Monitor

	Conclusion
	Bibliography
	IIDC Video Formats & Modes
	Philips 7023 Datasheet
	Conversion functions to (A)RGB32

